• Title/Summary/Keyword: Multi-Objective GA

Search Result 79, Processing Time 0.027 seconds

OPF with Environmental Constraints with Multi Shunt Dynamic Controllers using Decomposed Parallel GA: Application to the Algerian Network

  • Mahdad, B.;Bouktir, T.;Srairi, K.
    • Journal of Electrical Engineering and Technology
    • /
    • v.4 no.1
    • /
    • pp.55-65
    • /
    • 2009
  • Due to the rapid increase of electricity demand, consideration of environmental constraints in optimal power flow (OPF) problems is increasingly important. In Algeria, up to 90% of electricity is produced by thermal generators (vapor, gas). In order to keep the emission of gaseous pollutants like sulfur dioxide (SO2) and Nitrogen (NO2) under the admissible ecological limits, many conventional and global optimization methods have been proposed to study the trade-off relation between fuel cost and emissions. This paper presents an efficient decomposed Parallel GA to solve the multi-objective environmental/economic dispatch problem. At the decomposed stage the length of the original chromosome is reduced successively and adapted to the topology of the new partition. Two subproblems are proposed: the first subproblem is related to the active power planning to minimize the total fuel cost, and the second subproblem is a reactive power planning design based in practical rules to make fine corrections to the voltage deviation and reactive power violation using a specified number of shunt dynamic compensators named Static Var Compensators (SVC). To validate the robustness of the proposed approach, the algorithm proposed was tested on the Algerian 59-bus network test and compared with conventional methods and with global optimization methods (GA, FGA, and ACO). The results show that the approach proposed can converge to the near solution and obtain a competitive solution at a critical situation and within a reasonable time.

Multi-objective Genetic Algorithm for Variable Selection in Linear Regression Model and Application (선형회귀모델의 변수선택을 위한 다중목적 유전 알고리즘과 응용)

  • Kim, Dong-Il;Park, Cheong-Sool;Baek, Jun-Geol;Kim, Sung-Shick
    • Journal of the Korea Society for Simulation
    • /
    • v.18 no.4
    • /
    • pp.137-148
    • /
    • 2009
  • The purpose of this study is to implement variable selection algorithm which helps construct a reliable linear regression model. If we use all candidate variables to construct a linear regression model, the significance of the model will be decreased and it will cause 'Curse of Dimensionality'. And if the number of data is less than the number of variables (dimension), we cannot construct the regression model. Due to these problems, we consider the variable selection problem as a combinatorial optimization problem, and apply GA (Genetic Algorithm) to the problem. Typical measures of estimating statistical significance are $R^2$, F-value of regression model, t-value of regression coefficients, and standard error of estimates. We design GA to solve multi-objective functions, because statistical significance of model is not to be estimated by a single measure. We perform experiments using simulation data, designed to consider various kinds of situations. As a result, it shows better performance than LARS (Least Angle Regression) which is an algorithm to solve variable selection problems. We modify algorithm to solve portfolio selection problem which construct portfolio by selecting stocks. We conclude that the algorithm is able to solve real problems.

Machining Route Selection with Subcontracting Using Genetic Algorithm (와주를 고려한 가공경로 선정에서의 유전알고르즘 접근)

  • 이규용;문치웅;김재균
    • Korean Management Science Review
    • /
    • v.17 no.2
    • /
    • pp.55-65
    • /
    • 2000
  • This paper addresses a problem of machining route selection in multi-stage process with machine group. This problem is considered the subcontracting and the production in-house such as regular and overtime work. the proposed model is formulated as a 0-1 integer programming constraining the avaliable time of each machine for planning period and total overtimes. The objective of the model is to minimize the sum of processing cost, overtime cost, and subcontracting cost. To solve this model, a genetic algorithm(GA) approach is developed. The effectiveness of the proposed GA approach is evaluated through comparisons with the optimal solution obtained from the branch and bound. In results, the same optimal solution is obtained from two methods at small size problem, and the consistent solution is provided by the GA approach at large size problem. The advantage of the GA approach is the flexibility into decision-making process because of providing multiple machining routes.

  • PDF

Layout Optimization of FPSO Topside High Pressure Equipment Considering Fire Accidents with Wind Direction (풍향에 따른 화재영향을 고려한 FPSO 상부구조물 고압가스 모듈내부의 장비 최적배치 연구)

  • Bae, Jeong-Hoon;Jeong, Yeon-Uk;Shin, Sung-Chul;Kim, Soo-Young
    • Journal of Ocean Engineering and Technology
    • /
    • v.28 no.5
    • /
    • pp.404-410
    • /
    • 2014
  • The purpose of this study was to find the optimal arrangement of FPSO equipment in a module while considering the economic value and fire risk. We estimated the economic value using the pipe connections and pump installation cost in an HP (high pressure) gas compression module. The equipment risks were also analyzed using fire scenarios based on historical data. To consider the wind effect during a fire accident, fuzzy modeling was applied to improve the accuracy of the analysis. The objective functions consisted of the economic value and fire risk, and the constraints were the equipment maintenance and weight balance of the module. We generated a Pareto-optimal front group using a multi-objective GA (genetic algorithm) and suggested an equipment arrangement method that included the opinions of the designer.

Genetic Algorithm Based Design Optimization of a Six Phase Induction Motor

  • Fazlipour, Z.;Kianinezhad, R.;Razaz, M.
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.1007-1014
    • /
    • 2015
  • An optimally designed six-phase induction motor (6PIM) is compared with an initial design induction motor having the same ratings. The Genetic Algorithm (GA) method is used for optimization and multi objective function is considered. Comparison of the optimum design with the initial design reveals that better performance can be obtained by a simple optimization method. Also in this paper each design of 6PIM, is simulated by MAXWELL_2D. The obtained simulation results are compared in order to find the most suitable solution for the specified application, considering the influence of each design upon the motor performance. Construction a 6PIM based on the information obtained from GA method has been done. Quality parameters of the designed motors, such as: efficiency, power losses and power factor measured and optimal design has been evaluated. Laboratory tests have proven the correctness of optimal design.

A Daily Scheduling of Generator Maintenance using Fuzzy Set Theory combined with Genetic Algorithm (퍼지 집합이론과 유전알고리즘을 이용한 일간 발전기 보수유지계획의 수립)

  • Oh, Tae-Gon;Choi, Jae-Seok;Baek, Ung-Ki
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.7
    • /
    • pp.1314-1323
    • /
    • 2011
  • The maintenance of generating units is implicitly related with power system reliability and has a tremendous bearing on the operation of the power system. A technique using a fuzzy search method which is based on fuzzy multi-criteria function has been proposed for GMS (generator maintenance scheduling) in order to consider multi-objective function. In this study, a new technique using combined fuzzy set theory and genetic algorithm(GA) is proposed for generator maintenance scheduling. The genetic algorithm(GA) is expected to make up for that fuzzy search method might search the local solution. The effectiveness of the proposed approach is demonstrated by the simulation results on a practical size test systems.

Multi-Criteria Topology Design of Truss Structures

  • Yang, Young-Soon;Ruy, Won-Sun
    • Journal of Ship and Ocean Technology
    • /
    • v.5 no.2
    • /
    • pp.14-26
    • /
    • 2001
  • This paper presents a novel design approach that could generate structural design alternatives having different topologies and then, select the optimum structure from them with simulataneously determining its optimum design variables related to geometry and the member size subjected to the multiple objective design environments. For this purpose, a specialized genetic algorithm, called StrGA_DeAl + MOGA, which can handle the design alternatives and multi-criteria problems very effectively, is developed for the optimal structural design. To validate the developed method, method, plain truss design problems are considered as illustrative example. To begin with, some possible topological of the truss structure are suggested based on the stability criterion that should be satisfied under the given loading condition. Then, with the consideration of the given multi-criteria, several different topology forms are selected as design alternatives for the second step of the conceptual design process. Based on the chosen topolgy of truss structures, the sizing or shaping optimization process starts to determine the optimum design parameters. Ten-bar truss problems are given in the paper to confirm the above concept and methodology.

  • PDF

Multi-Objective Optimal Distributions of Viscous Dampers for Vibration Control of Adjacent Twin Structures (인접한 쌍둥이 구조물의 진동제어를 위한 점성 감쇠기의 다목적 최적 분포)

  • Ryu, Seonho;Ok, Seung-Yong
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.2
    • /
    • pp.61-67
    • /
    • 2018
  • This study proposes a new vibration control approach for adjacent twin structures, which is termed as viscous damper asymmetric coupling system in this paper. The proposed system takes a concept that the diagonal bracing viscous dampers are asymmetrically distributed in two buildings to break the behavior symmetry of the twin buildings and then the coupling viscous damper is additionally installed at the top floor of the two buildings to couple both buildings and interactively transfer the asymmetric behavior-caused damping forces into both buildings. These asymmetric damping distributions and interacting damping forces of the connection damper efficiently suppress the overall vibration of the damper-coupled adjacent twin buildings efficiently. Genetic algorithm (GA) based multi-objective optimization technique is adopted for optimal design of the proposed system. In the numerical example of adjacent twin 10-story building structures, the conventional control approach, that is, uniform damping distribution system (UDS) is also taken into account for comparison purpose. The optimization results verify that the proposed system either can improve the control performance over the UDS with the same damping capacity, or can save the damping capacity significantly while maintaining the similar level of control performance to the UDS.

Probabilistic multi-objective optimization of a corrugated-core sandwich structure

  • Khalkhali, Abolfazl;Sarmadi, Morteza;Khakshournia, Sharif;Jafari, Nariman
    • Geomechanics and Engineering
    • /
    • v.10 no.6
    • /
    • pp.709-726
    • /
    • 2016
  • Corrugated-core sandwich panels are prevalent for many applications in industries. The researches performed with the aim of optimization of such structures in the literature have considered a deterministic approach. However, it is believed that deterministic optimum points may lead to high-risk designs instead of optimum ones. In this paper, an effort has been made to provide a reliable and robust design of corrugated-core sandwich structures through stochastic and probabilistic multi-objective optimization approach. The optimization is performed using a coupling between genetic algorithm (GA), Monte Carlo simulation (MCS) and finite element method (FEM). To this aim, Prob. Design module in ANSYS is employed and using a coupling between optimization codes in MATLAB and ANSYS, a connection has been made between numerical results and optimization process. Results in both cases of deterministic and probabilistic multi-objective optimizations are illustrated and compared together to gain a better understanding of the best sandwich panel design by taking into account reliability and robustness. Comparison of results with a similar deterministic optimization study demonstrated better reliability and robustness of optimum point of this study.

Optimal Design of a Squeeze Film Damper Using an Enhanced Genetic Algorithm

  • Ahn, Young-Kong;Kim, Young-Chan;Yang, Bo-Suk
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.12
    • /
    • pp.1938-1948
    • /
    • 2003
  • This paper represents that an enhanced genetic algorithm (EGA) is applied to optimal design of a squeeze film damper (SFD) to minimize the maximum transmitted load between the bearing and foundation in the operational speed range. A general genetic algorithm (GA) is well known as a useful global optimization technique for complex and nonlinear optimization problems. The EGA consists of the GA to optimize multi-modal functions and the simplex method to search intensively the candidate solutions by the GA for optimal solutions. The performance of the EGA with a benchmark function is compared to them by the IGA (Immune-Genetic Algorithm) and SQP (Sequential Quadratic Programming). The radius, length and radial clearance of the SFD are defined as the design parameters. The objective function is the minimization of a maximum transmitted load of a flexible rotor system with the nonlinear SFDs in the operating speed range. The effectiveness of the EGA for the optimal design of the SFD is discussed from a numerical example.