• Title/Summary/Keyword: Multi-Object Tracking

Search Result 167, Processing Time 0.025 seconds

Real-time Multi-Objects Recognition and Tracking Scheme (실시간 다중 객체 인식 및 추적 기법)

  • Kim, Dae-Hoon;Rho, Seung-Min;Hwang, Een-Jun
    • Journal of Advanced Navigation Technology
    • /
    • v.16 no.2
    • /
    • pp.386-393
    • /
    • 2012
  • In this paper, we propose an efficient multi-object recognition and tracking scheme based on interest points of objects and their feature descriptors. To do that, we first define a set of object types of interest and collect their sample images. For sample images, we detect interest points and construct their feature descriptors using SURF. Next, we perform a statistical analysis of the local features to select representative points among them. Intuitively, the representative points of an object are the interest points that best characterize the object. in addition, we make the movement vectors of the interest points based on matching between their SURF descriptors and track the object using these vectors. Since our scheme treats all the objects independently, it can recognize and track multiple objects simultaneously. Through the experiments, we show that our proposed scheme can achieve reasonable performance.

PTZ Camera Based Multi Event Processing for Intelligent Video Network (지능형 영상네트워크 연계형 PTZ카메라 기반 다중 이벤트처리)

  • Chang, Il-Sik;Ahn, Seong-Je;Park, Gwang-Yeong;Cha, Jae-Sang;Park, Goo-Man
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.11A
    • /
    • pp.1066-1072
    • /
    • 2010
  • In this paper we proposed a multi event handling surveillance system using multiple PTZ cameras. One event is assigned to each PTZ camera to detect unusual situation. If a new object appears in the scene while a camera is tracking the old one, it can not handle two objects simultaneously. In the second case that the object moves out of the scene during the tracking, the camera loses the object. In the proposed method, the nearby camera takes the role to trace the new one or detect the lost one in each case. The nearby camera can get the new object location information from old camera and set the seamless event link for the object. Our simulation result shows the continuous camera-to-camera object tracking performance.

Multi-Object Detection and Tracking Using Dual-Layer Particle Sampling (이중계층구조 파티클 샘플링을 사용한 다중객체 검출 및 추적)

  • Jeong, Kyungwon;Kim, Nahyun;Lee, Seoungwon;Paik, Joonki
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.9
    • /
    • pp.139-147
    • /
    • 2014
  • In this paper, we present a novel method for simultaneous detection and tracking of multiple objects using dual-layer particle filtering. The proposed dual-layer particle sampling (DLPS) algorithm consists of parent-particles (PP) in the first layer for detecting multiple objects and child-particles (CP) in the second layer for tracking objects. In the first layer, PPs detect persons using a classifier trained by the intersection kernel support vector machine (IKSVM) at each particle under a randomly selected scale. If a certain PP detects a person, it generates CPs, and makes an object model in the detected object region for tracking the detected object. While PPs that have detected objects generate CPs for tracking, the rest of PPs still move for detecting objects. Experimental results show that the proposed method can automatically detect and track multiple objects, and efficiently reduce the processing time using the sampled particles based on motion distribution in video sequences.

Development of an Integrated Traffic Object Detection Framework for Traffic Data Collection (교통 데이터 수집을 위한 객체 인식 통합 프레임워크 개발)

  • Yang, Inchul;Jeon, Woo Hoon;Lee, Joyoung;Park, Jihyun
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.18 no.6
    • /
    • pp.191-201
    • /
    • 2019
  • A fast and accurate integrated traffic object detection framework was proposed and developed, harnessing a computer-vision based deep-learning approach performing automatic object detections, a multi object tracking technology, and video pre-processing tools. The proposed method is capable of detecting traffic object such as autos, buses, trucks and vans from video recordings taken under a various kinds of external conditions such as stability of video, weather conditions, video angles, and counting the objects by tracking them on a real-time basis. By creating plausible experimental scenarios dealing with various conditions that likely affect video quality, it is discovered that the proposed method achieves outstanding performances except for the cases of rain and snow, thereby resulting in 98% ~ 100% of accuracy.

Robust Object Tracking for Scale Changes (스케일에 강건한 물체 추적 기법)

  • Cheon, Gi-Hong;Kang, Hang-Bong
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.45 no.6
    • /
    • pp.194-203
    • /
    • 2008
  • Though conventional video surveillance systems such as CCTV depended on operators, recently developed intelligent surveillance systems no longer needed operators. However, these new intelligent surveillance systems have their own problems such as Occlusion, changing scale of target object, and affine. This paper handled information damage caused by changing the scale of the target object among other objects. Due to the change of the scale, the inaccurate information of target can be obtained when we update the background information. To handle this problem, we introduce a solution for information damage caused by problem of changing scale of target object located among other objects. Specifically, we suggest multi-stage sampling particle filter based advanced MSER for object tracking system. Through this method, the problem caused by changing scale of target can be avoided.

Relation Tracking of Occluded objects using a Perspective Depth (투시적 깊이를 활용한 중첩된 객체의 관계추적)

  • Park, Hwa-Jin
    • Journal of Digital Contents Society
    • /
    • v.16 no.6
    • /
    • pp.901-908
    • /
    • 2015
  • Networked multiple CCTV systems are required to effectively trace down long-term abnormal behaviors, such as stalking. However, the occluding event, which often takes place during tracking, may result in critical errors of cessation of tracing, or tracking wrong objects. Thus, utilizing installed regular CCTVs, this study aims to trace the relation tracking in a continuous manner by recognizing distinctive features of each object and its perspective projection depth to address the problem with occluded objects. In addition, this study covers occlusion event between the stationary background objects, such as street lights, or walls, and the targeted object.

Color Pattern Recognition and Tracking for Multi-Object Tracking in Artificial Intelligence Space (인공지능 공간상의 다중객체 구분을 위한 컬러 패턴 인식과 추적)

  • Tae-Seok Jin
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.27 no.2_2
    • /
    • pp.319-324
    • /
    • 2024
  • In this paper, the Artificial Intelligence Space(AI-Space) for human-robot interface is presented, which can enable human-computer interfacing, networked camera conferencing, industrial monitoring, service and training applications. We present a method for representing, tracking, and objects(human, robot, chair) following by fusing distributed multiple vision systems in AI-Space. The article presents the integration of color distributions into particle filtering. Particle filters provide a robust tracking framework under ambiguous conditions. We propose to track the moving objects(human, robot, chair) by generating hypotheses not in the image plane but on the top-view reconstruction of the scene.

A Method of Multi-Scale Feature Compression for Object Tracking in VCM (VCM 의 객체추적을 위한 다중스케일 특징 압축 기법)

  • Yong-Uk Yoon;Gyu-Woong Han;Dong-Ha Kim;Jae-Gon Kim
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2022.11a
    • /
    • pp.10-13
    • /
    • 2022
  • 최근 인공지능 기술을 바탕으로 지능형 분석을 수행하는 기계를 위한 비디오 부호화 기술의 필요성이 요구되면서, MPEG 에서는 VCM(Video Coding for Machines) 표준화를 시작하였다. VCM 에서는 기계를 위한 비디오/이미지 압축 또는 비디오/이미지 특징 압축을 위한 다양한 방법이 제시되고 있다. 본 논문에서는 객체추적(object tracking)을 위한 머신비전(machine vision) 네트워크에서 추출되는 다중스케일(multi-scale) 특징의 효율적인 압축 기법을 제시한다. 제안기법은 다중스케일 특징을 단일스케일(single-scale) 특징으로 차원을 축소하여 형성된 특징 시퀀스를 최신 비디오 코덱 표준인 VVC(Versatile Video Coding)를 사용하여 압축한다. 제안기법은 VCM 에서 제시하는 기준(anchor) 대비 89.65%의 BD-rate 부호화 성능향상을 보인다.

  • PDF

Implementation of Object Feature Extraction within Image for Object Tracking (객체 추적을 위한 영상 내의 객체 특징점 추출 알고리즘 구현)

  • Lee, Yong-Hwan;Kim, Youngseop
    • Journal of the Semiconductor & Display Technology
    • /
    • v.17 no.3
    • /
    • pp.113-116
    • /
    • 2018
  • This paper proposes a mobile image search system which uses a sensor information of smart phone, and enables running in a variety of environments, which is implemented on Android platform. The implemented system deals with a new image descriptor using combination of the visual feature (CEDD) with EXIF attributes in the target of JPEG image, and image matching scheme, which is optimized to the mobile platform. Experimental result shows that the proposed method exhibited a significant improved searching results of around 80% in precision in the large image database. Considering the performance such as processing time and precision, we think that the proposed method can be used in other application field.

Recognition method of multiple objects for virtual touch using depth information (깊이 정보를 이용한 가상 터치에서 다중 객체 인식 방법)

  • Kwon, Soon-Kak;Lee, Dong-Seok
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.21 no.1
    • /
    • pp.27-34
    • /
    • 2016
  • In this paper, we propose how to recognize a multi-touch in the virtual touch type. Virtual touch has an advantage that it is installed only simple depth camera compared to the physical touch manners and it can be implemented with low cost for extracting an object exactly from only the difference of the depth values between the object and background. However, the accuracy for implementing the multi-touch has lowered. This paper presents a method to increase the accuracy of the multi-touch through the algorithms of binarization, labelling, and object tracking for multi-object recognition. Simulation results show that the proposed method can provide a variety of multi-touch events.