• Title/Summary/Keyword: Multi-Object Tracking

Search Result 167, Processing Time 0.024 seconds

Moving Objects Tracking Method using Spatial Projection in Intelligent Video Traffic Surveillance System (지능형 영상 교통 감시 시스템에서 공간 투영기법을 이용한 이동물체 추적 방법)

  • Hong, Kyung Taek;Shim, Jae Homg;Cho, Young Im
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.1
    • /
    • pp.35-41
    • /
    • 2015
  • When a video surveillance system tracks a specific object, it is very important to get quickly the information of the object through fast image processing. Usually one camera surveillance system for tracking the object made results in various problems such like occlusion, image noise during the tracking process. It makes difficulties on image based moving object tracking. Therefore, to overcome the difficulties the multi video surveillance system which installed several camera within interested area and looking the same object from multi angles of view could be considered as a solution. If multi cameras are used for tracking object, it is capable of making a decision having high accuracy in more wide space. This paper proposes a method of recognizing and tracking a specific object like a car using the homography in which multi cameras are installed at the crossroad.

Towards Real-time Multi-object Tracking in CPU Environment (CPU 환경에서의 실시간 동작을 위한 딥러닝 기반 다중 객체 추적 시스템)

  • Kim, Kyung Hun;Heo, Jun Ho;Kang, Suk-Ju
    • Journal of Broadcast Engineering
    • /
    • v.25 no.2
    • /
    • pp.192-199
    • /
    • 2020
  • Recently, the utilization of the object tracking algorithm based on the deep learning model is increasing. A system for tracking multiple objects in an image is typically composed of a chain form of an object detection algorithm and an object tracking algorithm. However, chain-type systems composed of several modules require a high performance computing environment and have limitations in their application to actual applications. In this paper, we propose a method that enables real-time operation in low-performance computing environment by adjusting the computational process of object detection module in the object detection-tracking chain type system.

Multi-Object Tracking based on Reliability Assessment of Learning in Mobile Environment (모바일 환경 신뢰도 평가 학습에 의한 다중 객체 추적)

  • Han, Woo ri;Kim, Young-Seop;Lee, Yong-Hwan
    • Journal of the Semiconductor & Display Technology
    • /
    • v.14 no.3
    • /
    • pp.73-77
    • /
    • 2015
  • This paper proposes an object tracking system according to reliability assessment of learning in mobile environments. The proposed system is based on markerless tracking, and there are four modules which are recognition, tracking, detecting and learning module. Recognition module detects and identifies an object to be matched on current frame correspond to the database using LSH through SURF, and then this module generates a standard object information that has the best reliability of learning. The standard object information is used for evaluating and learning the object that is successful tracking in tracking module. Detecting module finds out the object based on having the best possible knowledge available among the learned objects information, when the system fails to track. The experimental results show that the proposed system is able to recognize and track the reliable objects with reliability assessment of learning for the use of mobile platform.

Study on Underwater Object Tracking Based on Real-Time Recurrent Regression Networks Using Multi-beam Sonar Images (실시간 순환 신경망 기반의 멀티빔 소나 이미지를 이용한 수중 물체의 추적에 관한 연구)

  • Lee, Eon-ho;Lee, Yeongjun;Choi, Jinwoo;Lee, Sejin
    • The Journal of Korea Robotics Society
    • /
    • v.15 no.1
    • /
    • pp.8-15
    • /
    • 2020
  • This research is a case study of underwater object tracking based on real-time recurrent regression networks (Re3). Re3 has the concept of generic object tracking. Because of these characteristics, it is very effective to apply this model to unclear underwater sonar images. The model also an pursues object tracking method, thus it solves the problem of calculating load that may be limited when object detection models are used, unlike the tracking models. The model is also highly intuitive, so it has excellent continuity of tracking even if the object being tracked temporarily becomes partially occluded or faded. There are 4 types of the dataset using multi-beam sonar images: including (a) dummy object floated at the testbed; (b) dummy object settled at the bottom of the sea; (c) tire object settled at the bottom of the testbed; (d) multi-objects settled at the bottom of the testbed. For this study, the experiments were conducted to obtain underwater sonar images from the sea and underwater testbed, and the validity of using noisy underwater sonar images was tested to be able to track objects robustly.

Appearance Based Object Identification for Mobile Robot Localization in Intelligent Space with Distributed Vision Sensors

  • Jin, TaeSeok;Morioka, Kazuyuki;Hashimoto, Hideki
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.4 no.2
    • /
    • pp.165-171
    • /
    • 2004
  • Robots will be able to coexist with humans and support humans effectively in near future. One of the most important aspects in the development of human-friendly robots is to cooperation between humans and robots. In this paper, we proposed a method for multi-object identification in order to achieve such human-centered system and robot localization in intelligent space. The intelligent space is the space where many intelligent devices, such as computers and sensors, are distributed. The Intelligent Space achieves the human centered services by accelerating the physical and psychological interaction between humans and intelligent devices. As an intelligent device of the Intelligent Space, a color CCD camera module, which includes processing and networking part, has been chosen. The Intelligent Space requires functions of identifying and tracking the multiple objects to realize appropriate services to users under the multi-camera environments. In order to achieve seamless tracking and location estimation many camera modules are distributed. They causes some errors about object identification among different camera modules. This paper describes appearance based object representation for the distributed vision system in Intelligent Space to achieve consistent labeling of all objects. Then, we discuss how to learn the object color appearance model and how to achieve the multi-object tracking under occlusions.

Moving Object Detection and Tracking in Multi-view Compressed Domain (비디오 압축 도메인에서 다시점 카메라 기반 이동체 검출 및 추적)

  • Lee, Bong-Ryul;Shin, Youn-Chul;Park, Joo-Heon;Lee, Myeong-Jin
    • Journal of Advanced Navigation Technology
    • /
    • v.17 no.1
    • /
    • pp.98-106
    • /
    • 2013
  • In this paper, we propose a moving object detection and tracking method for multi-view camera environment. Based on the similarity and characteristics of motion vectors and coding block modes extracted from compressed bitstreams, validation of moving blocks, labeling of the validated blocks, and merging of neighboring blobs are performed. To continuously track objects for temporary stop, crossing, and overlapping events, a window based object updating algorithm is proposed for single- and multi-view environments. Object detection and tracking could be performed with an acceptable level of performance without decoding of video bitstreams for normal, temporary stop, crossing, and overlapping cases. The rates of detection and tracking are over 89% and 84% in multi-view environment, respectively. The rates for multi-view environment are improved by 6% and 7% compared to those of single-view environment.

Fusion of Local and Global Detectors for PHD Filter-Based Multi-Object Tracking (검출기 융합에 기반을 둔 확률가정밀도 (PHD) 필터를 적용한 다중 객체 추적 방법)

  • Yoon, Ju Hong;Hwang, Youngbae;Choi, Byeongho;Yoon, Kuk-Jin
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.9
    • /
    • pp.773-777
    • /
    • 2016
  • In this paper, a novel multi-object tracking method to track an unknown number of objects is proposed. To handle multiple object states and uncertain observations efficiently, a probability hypothesis density (PHD) filter is adopted and modified. The PHD filter is capable of reducing false positives, managing object appearances and disappearances, and estimating the multiple object trajectories in a unified framework. Although the PHD filter is robust in cluttered environments, it is vulnerable to false negatives. For this reason, we propose to exploit local observations in an RFS of the observation model. Each local observation is generated by using an online trained object detector. The main purpose of the local observation is to deal with false negatives in the PHD filtering procedure. The experimental results demonstrated that the proposed method robustly tracked multiple objects under practical situations.

Visual Tracking Using Monte Carlo Sampling and Background Subtraction (확률적 표본화와 배경 차분을 이용한 비디오 객체 추적)

  • Kim, Hyun-Cheol;Paik, Joon-Ki
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.5
    • /
    • pp.16-22
    • /
    • 2011
  • This paper presents the multi-object tracking approach using the background difference and particle filtering by monte carlo sampling. We apply particle filters based on probabilistic importance sampling to multi-object independently. We formulate the object observation model by the histogram distribution using color information and the object dynaminc model for the object motion information. Our approach does not increase computational complexity and derive stable performance. We implement the whole Bayesian maximum likelihood framework and describes robust methods coping with the real-world object tracking situation by the observation and transition model.

A Task Scheduling Strategy in a Multi-core Processor for Visual Object Tracking Systems (시각물체 추적 시스템을 위한 멀티코어 프로세서 기반 태스크 스케줄링 방법)

  • Lee, Minchae;Jang, Chulhoon;Sunwoo, Myoungho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.2
    • /
    • pp.127-136
    • /
    • 2016
  • The camera based object detection systems should satisfy the recognition performance as well as real-time constraints. Particularly, in safety-critical systems such as Autonomous Emergency Braking (AEB), the real-time constraints significantly affects the system performance. Recently, multi-core processors and system-on-chip technologies are widely used to accelerate the object detection algorithm by distributing computational loads. However, due to the advanced hardware, the complexity of system architecture is increased even though additional hardwares improve the real-time performance. The increased complexity also cause difficulty in migration of existing algorithms and development of new algorithms. In this paper, to improve real-time performance and design complexity, a task scheduling strategy is proposed for visual object tracking systems. The real-time performance of the vision algorithm is increased by applying pipelining to task scheduling in a multi-core processor. Finally, the proposed task scheduling algorithm is applied to crosswalk detection and tracking system to prove the effectiveness of the proposed strategy.

Viewpoint Invariant Person Re-Identification for Global Multi-Object Tracking with Non-Overlapping Cameras

  • Gwak, Jeonghwan;Park, Geunpyo;Jeon, Moongu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.4
    • /
    • pp.2075-2092
    • /
    • 2017
  • Person re-identification is to match pedestrians observed from non-overlapping camera views. It has important applications in video surveillance such as person retrieval, person tracking, and activity analysis. However, it is a very challenging problem due to illumination, pose and viewpoint variations between non-overlapping camera views. In this work, we propose a viewpoint invariant method for matching pedestrian images using orientation of pedestrian. First, the proposed method divides a pedestrian image into patches and assigns angle to a patch using the orientation of the pedestrian under the assumption that a person body has the cylindrical shape. The difference between angles are then used to compute the similarity between patches. We applied the proposed method to real-time global multi-object tracking across multiple disjoint cameras with non-overlapping field of views. Re-identification algorithm makes global trajectories by connecting local trajectories obtained by different local trackers. The effectiveness of the viewpoint invariant method for person re-identification was validated on the VIPeR dataset. In addition, we demonstrated the effectiveness of the proposed approach for the inter-camera multiple object tracking on the MCT dataset with ground truth data for local tracking.