• Title/Summary/Keyword: Multi-Network

Search Result 4,655, Processing Time 0.03 seconds

Asymmetric data storage management scheme to ensure the safety of big data in multi-cloud environments based on deep learning (딥러닝 기반의 다중 클라우드 환경에서 빅 데이터의 안전성을 보장하기 위한 비대칭 데이터 저장 관리 기법)

  • Jeong, Yoon-Su
    • Journal of Digital Convergence
    • /
    • v.19 no.3
    • /
    • pp.211-216
    • /
    • 2021
  • Information from various heterogeneous devices is steadily increasing in distributed cloud environments. This is because high-speed network speeds and high-capacity multimedia data are being used. However, research is still underway on how to minimize information errors in big data sent and received by heterogeneous devices. In this paper, we propose a deep learning-based asymmetric storage management technique for minimizing bandwidth and data errors in networks generated by information sent and received in cloud environments. The proposed technique applies deep learning techniques to optimize the load balance after asymmetric hash of the big data information generated by each device. The proposed technique is characterized by allowing errors in big data collected from each device, while also ensuring the connectivity of big data by grouping big data into groups of clusters of dogs. In particular, the proposed technique minimizes information errors when storing and managing big data asymmetrically because it used a loss function that extracted similar values between big data as seeds.

A Bio-inspired Hybrid Cross-Layer Routing Protocol for Energy Preservation in WSN-Assisted IoT

  • Tandon, Aditya;Kumar, Pramod;Rishiwal, Vinay;Yadav, Mano;Yadav, Preeti
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.4
    • /
    • pp.1317-1341
    • /
    • 2021
  • Nowadays, the Internet of Things (IoT) is adopted to enable effective and smooth communication among different networks. In some specific application, the Wireless Sensor Networks (WSN) are used in IoT to gather peculiar data without the interaction of human. The WSNs are self-organizing in nature, so it mostly prefer multi-hop data forwarding. Thus to achieve better communication, a cross-layer routing strategy is preferred. In the cross-layer routing strategy, the routing processed through three layers such as transport, data link, and physical layer. Even though effective communication achieved via a cross-layer routing strategy, energy is another constraint in WSN assisted IoT. Cluster-based communication is one of the most used strategies for effectively preserving energy in WSN routing. This paper proposes a Bio-inspired cross-layer routing (BiHCLR) protocol to achieve effective and energy preserving routing in WSN assisted IoT. Initially, the deployed sensor nodes are arranged in the form of a grid as per the grid-based routing strategy. Then to enable energy preservation in BiHCLR, the fuzzy logic approach is executed to select the Cluster Head (CH) for every cell of the grid. Then a hybrid bio-inspired algorithm is used to select the routing path. The hybrid algorithm combines moth search and Salp Swarm optimization techniques. The performance of the proposed BiHCLR is evaluated based on the Quality of Service (QoS) analysis in terms of Packet loss, error bit rate, transmission delay, lifetime of network, buffer occupancy and throughput. Then these performances are validated based on comparison with conventional routing strategies like Fuzzy-rule-based Energy Efficient Clustering and Immune-Inspired Routing (FEEC-IIR), Neuro-Fuzzy- Emperor Penguin Optimization (NF-EPO), Fuzzy Reinforcement Learning-based Data Gathering (FRLDG) and Hierarchical Energy Efficient Data gathering (HEED). Ultimately the performance of the proposed BiHCLR outperforms all other conventional techniques.

Improving Multi-DNN Computational Performance of Embedded Multicore Processors through a Global Queue (글로벌 큐를 통한 임베디드 멀티코어 프로세서의 멀티 DNN 연산 성능 향상)

  • Cho, Ho-jin;Kim, Myung-sun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.6
    • /
    • pp.714-721
    • /
    • 2020
  • DNN is expanding its use in embedded systems such as robots and autonomous vehicles. For high recognition accuracy, computational complexity is greatly increased, and multiple DNNs are running aperiodically. Therefore, the ability processing multiple DNNs in embedded environments is a crucial issue. Accordingly, multicore based platforms are being released. However, most DNN models are operated in a batch process, and when multiple DNNs are operated in multicore together, the execution time deviation between each DNN may be large and the end-to-end execution time of the whole DNNs could be long depending on how they are allocated to the cores. In this paper, we solve these problems by providing a framework that decompose each DNN into individual layers and then distribute to multicores through a global queue. As a result of the experiment, the total DNN execution time was reduced by 31%, and when operating multiple identical DNNs, the deviation in execution time was reduced by up to 95.1%.

Technology Development Strategy of Piggyback Transportation System Using Topic Modeling Based on LDA Algorithm

  • Jun, Sung-Chan;Han, Seong-Ho;Kim, Sang-Baek
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.12
    • /
    • pp.261-270
    • /
    • 2020
  • In this study, we identify promising technologies for Piggyback transportation system by analyzing the relevant patent information. In order for this, we first develop the patent database by extracting relevant technology keywords from the pioneering research papers for the Piggyback flactcar system. We then employed textmining to identify the frequently referred words from the patent database, and using these words, we applied the LDA (Latent Dirichlet Allocation) algorithm in order to identify "topics" that are corresponding to "key" technologies for the Piggyback system. Finally, we employ the ARIMA model to forecast the trends of these "key" technologies for technology forecasting, and identify the promising technologies for the Piggyback system. with keyword search method the patent analysis. The results show that data-driven integrated management system, operation planning system and special cargo (especially fluid and gas) handling/storage technologies are identified to be the "key" promising technolgies for the future of the Piggyback system, and data reception/analysis techniques must be developed in order to improve the system performance. The proposed procedure and analysis method provides useful insights to develop the R&D strategy and the technology roadmap for the Piggyback system.

Effect of Media Literacy on the Formation of Smart Divide (미디어 리터러시가 스마트 디바이드 형성에 미치는 영향)

  • Lee, Seungmin
    • Journal of the Korean Society for information Management
    • /
    • v.38 no.2
    • /
    • pp.19-38
    • /
    • 2021
  • This study empirically analyzed the effect of media literacy on the formation of the smart divide, which is a multi-faceted digital divide that occurs in the context of the use of smart devices. As a result, most of the factors of media literacy affect the establishment of social relations and social network through the use of smart devices, which, in turn, leads to the expansion of the range of informational and social activities. In addition, media literacy has a significant effect on the competence to evaluate the value of information acquired through the use of smart devices. Based on these results, there can be social disparity between those who have secured media literacy and those who do not from the perspective of informational and social benefits through the use of smart devices, which can function as a mechanism to generate the smart divide.

P2P Systems based on Cloud Computing for Scalability of MMOG (MMOG의 확장성을 위한 클라우드 컴퓨팅 기반의 P2P 시스템)

  • Kim, Jin-Hwan
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.4
    • /
    • pp.1-8
    • /
    • 2021
  • In this paper, we propose an approach that combines the technological advantages of P2P and cloud computing to support MMOGs that allowing a huge amount of users worldwide to share a real-time virtual environment. The proposed P2P system based on cloud computing can provide a greater level of scalability because their more resources are added to the infrastructure even when the amount of users grows rapidly. This system also relieves a lot of computational power and network traffic, the load on the servers in the cloud by exploiting the capacity of the peers. In this paper, we describe the concept and basic architecture of cloud computing-based P2P Systems for scalability of MMOGs. An efficient and effective provisioning of resources and mapping of load are mandatory to realize this architecture that scales in economical cost and quality of service to large communities of users. Simulation results show that by controlling the amount of cloud and user-provided resource, the proposed P2P system can reduce the bandwidth at the server while utilizing their enough bandwidth when the number of simultaneous users keeps growing.

Exploration of deep learning facial motions recognition technology in college students' mental health (딥러닝의 얼굴 정서 식별 기술 활용-대학생의 심리 건강을 중심으로)

  • Li, Bo;Cho, Kyung-Duk
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.3
    • /
    • pp.333-340
    • /
    • 2022
  • The COVID-19 has made everyone anxious and people need to keep their distance. It is necessary to conduct collective assessment and screening of college students' mental health in the opening season of every year. This study uses and trains a multi-layer perceptron neural network model for deep learning to identify facial emotions. After the training, real pictures and videos were input for face detection. After detecting the positions of faces in the samples, emotions were classified, and the predicted emotional results of the samples were sent back and displayed on the pictures. The results show that the accuracy is 93.2% in the test set and 95.57% in practice. The recognition rate of Anger is 95%, Disgust is 97%, Happiness is 96%, Fear is 96%, Sadness is 97%, Surprise is 95%, Neutral is 93%, such efficient emotion recognition can provide objective data support for capturing negative. Deep learning emotion recognition system can cooperate with traditional psychological activities to provide more dimensions of psychological indicators for health.

Vibration Anomaly Detection of One-Class Classification using Multi-Column AutoEncoder

  • Sang-Min, Kim;Jung-Mo, Sohn
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.2
    • /
    • pp.9-17
    • /
    • 2023
  • In this paper, we propose a one-class vibration anomaly detection system for bearing defect diagnosis. In order to reduce the economic and time loss caused by bearing failure, an accurate defect diagnosis system is essential, and deep learning-based defect diagnosis systems are widely studied to solve the problem. However, it is difficult to obtain abnormal data in the actual data collection environment for deep learning learning, which causes data bias. Therefore, a one-class classification method using only normal data is used. As a general method, the characteristics of vibration data are extracted by learning the compression and restoration process through AutoEncoder. Anomaly detection is performed by learning a one-class classifier with the extracted features. However, this method cannot efficiently extract the characteristics of the vibration data because it does not consider the frequency characteristics of the vibration data. To solve this problem, we propose an AutoEncoder model that considers the frequency characteristics of vibration data. As for classification performance, accuracy 0.910, precision 1.0, recall 0.820, and f1-score 0.901 were obtained. The network design considering the vibration characteristics confirmed better performance than existing methods.

Forecasting Baltic Dry Index by Implementing Time-Series Decomposition and Data Augmentation Techniques (시계열 분해 및 데이터 증강 기법 활용 건화물운임지수 예측)

  • Han, Min Soo;Yu, Song Jin
    • Journal of Korean Society for Quality Management
    • /
    • v.50 no.4
    • /
    • pp.701-716
    • /
    • 2022
  • Purpose: This study aims to predict the dry cargo transportation market economy. The subject of this study is the BDI (Baltic Dry Index) time-series, an index representing the dry cargo transport market. Methods: In order to increase the accuracy of the BDI time-series, we have pre-processed the original time-series via time-series decomposition and data augmentation techniques and have used them for ANN learning. The ANN algorithms used are Multi-Layer Perceptron (MLP), Recurrent Neural Network (RNN), and Long Short-Term Memory (LSTM) to compare and analyze the case of learning and predicting by applying time-series decomposition and data augmentation techniques. The forecast period aims to make short-term predictions at the time of t+1. The period to be studied is from '22. 01. 07 to '22. 08. 26. Results: Only for the case of the MAPE (Mean Absolute Percentage Error) indicator, all ANN models used in the research has resulted in higher accuracy (1.422% on average) in multivariate prediction. Although it is not a remarkable improvement in prediction accuracy compared to uni-variate prediction results, it can be said that the improvement in ANN prediction performance has been achieved by utilizing time-series decomposition and data augmentation techniques that were significant and targeted throughout this study. Conclusion: Nevertheless, due to the nature of ANN, additional performance improvements can be expected according to the adjustment of the hyper-parameter. Therefore, it is necessary to try various applications of multiple learning algorithms and ANN optimization techniques. Such an approach would help solve problems with a small number of available data, such as the rapidly changing business environment or the current shipping market.

A Lightweight Pedestrian Intrusion Detection and Warning Method for Intelligent Traffic Security

  • Yan, Xinyun;He, Zhengran;Huang, Youxiang;Xu, Xiaohu;Wang, Jie;Zhou, Xiaofeng;Wang, Chishe;Lu, Zhiyi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.12
    • /
    • pp.3904-3922
    • /
    • 2022
  • As a research hotspot, pedestrian detection has a wide range of applications in the field of computer vision in recent years. However, current pedestrian detection methods have problems such as insufficient detection accuracy and large models that are not suitable for large-scale deployment. In view of these problems mentioned above, a lightweight pedestrian detection and early warning method using a new model called you only look once (Yolov5) is proposed in this paper, which utilizing advantages of Yolov5s model to achieve accurate and fast pedestrian recognition. In addition, this paper also optimizes the loss function of the batch normalization (BN) layer. After sparsification, pruning and fine-tuning, got a lot of optimization, the size of the model on the edge of the computing power is lower equipment can be deployed. Finally, from the experimental data presented in this paper, under the training of the road pedestrian dataset that we collected and processed independently, the Yolov5s model has certain advantages in terms of precision and other indicators compared with traditional single shot multiBox detector (SSD) model and fast region-convolutional neural network (Fast R-CNN) model. After pruning and lightweight, the size of training model is greatly reduced without a significant reduction in accuracy, and the final precision reaches 87%, while the model size is reduced to 7,723 KB.