• Title/Summary/Keyword: Multi-Model Training

Search Result 352, Processing Time 0.082 seconds

A Study on Performance Evaluation of Hidden Markov Network Speech Recognition System (Hidden Markov Network 음성인식 시스템의 성능평가에 관한 연구)

  • 오세진;김광동;노덕규;위석오;송민규;정현열
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.4 no.4
    • /
    • pp.30-39
    • /
    • 2003
  • In this paper, we carried out the performance evaluation of HM-Net(Hidden Markov Network) speech recognition system for Korean speech databases. We adopted to construct acoustic models using the HM-Nets modified by HMMs(Hidden Markov Models), which are widely used as the statistical modeling methods. HM-Nets are carried out the state splitting for contextual and temporal domain by PDT-SSS(Phonetic Decision Tree-based Successive State Splitting) algorithm, which is modified the original SSS algorithm. Especially it adopted the phonetic decision tree to effectively express the context information not appear in training speech data on contextual domain state splitting. In case of temporal domain state splitting, to effectively represent information of each phoneme maintenance in the state splitting is carried out, and then the optimal model network of triphone types are constructed by in the parameter. Speech recognition was performed using the one-pass Viterbi beam search algorithm with phone-pair/word-pair grammar for phoneme/word recognition, respectively and using the multi-pass search algorithm with n-gram language models for sentence recognition. The tree-structured lexicon was used in order to decrease the number of nodes by sharing the same prefixes among words. In this paper, the performance evaluation of HM-Net speech recognition system is carried out for various recognition conditions. Through the experiments, we verified that it has very superior recognition performance compared with the previous introduced recognition system.

  • PDF

The Forecasting a Maximum Barbell Weight of Snatch Technique in Weightlifting (역도 인상동작 성공 시 최대 바벨무게 예측)

  • Hah, Chong-Ku;Ryu, Ji-Seon
    • Korean Journal of Applied Biomechanics
    • /
    • v.15 no.3
    • /
    • pp.143-152
    • /
    • 2005
  • The purpose of this study was to predict the failure or success of the Snatch-lifting trial as a consequence of the stand-up phase simulated in Kane's equation of motion that was effective for the dynamic analysis of multi-segment. This experiment was a case study in which one male athlete (age: 23yrs, height: 154.4cm, weight: 64.5kg) from K University was selected The system of a simulation included a multi-segment system that had one degree of freedom and one generalized coordinate for the shank segment angle. The reference frame was fixed by the Nonlinear Trans formation (NLT) method in order to set up a fixed Cartesian coordinate system in space. A weightlifter lifted a 90kg-barbell that was 75% of subject's maximum lifting capability (120kg). For this study, six cameras (Qualisys Proreflex MCU240s) and two force-plates (Kistler 9286AAs) were used for collecting data. The motion tracks of 11 land markers were attached on the major joints of the body and barbell. The sampling rates of cameras and force-plates were set up 100Hz and 1000Hz, respectively. Data were processed via the Qualisys Track manager (QTM) software. Landmark positions and force-plate amplitudes were simultaneously integrated by Qualisys system The coordinate data were filtered using a fourth-order Butterworth low pass filtering with an estimated optimum cut-off frequency of 9Hz calculated with Andrew & Yu's formula. The input data of the model were derived from experimental data processed in Matlab6.5 and the solution of a model made in Kane's method was solved in Matematica5.0. The conclusions were as follows; 1. The torque motor of the shank with 246Nm from this experiment could lift a maximum barbell weight (158.98kg) which was about 246 times as much as subject's body weight (64.5kg). 2. The torque motor with 166.5 Nm, simulated by angular displacement of the shank matched to the experimental result, could lift a maximum barbell weight (90kg) which was about 1.4 times as much as subject's body weight (64.5kg). 3. Comparing subject's maximum barbell weight (120kg) with a modeling maximum barbell weight (155.51kg) and with an experimental maximum barbell weight (90kg), the differences between these were about +35.7kg and -30kg. These results strongly suggest that if the maximum barbell weight is decided, coaches will be able to provide further knowledge and information to weightlifters for the performance improvement and then prevent injuries from training of weightlifters. It hopes to apply Kane's method to other sports skill as well as weightlifting to simulate its motion in the future study.

A study on frost prediction model using machine learning (머신러닝을 사용한 서리 예측 연구)

  • Kim, Hyojeoung;Kim, Sahm
    • The Korean Journal of Applied Statistics
    • /
    • v.35 no.4
    • /
    • pp.543-552
    • /
    • 2022
  • When frost occurs, crops are directly damaged. When crops come into contact with low temperatures, tissues freeze, which hardens and destroys the cell membranes or chloroplasts, or dry cells to death. In July 2020, a sudden sub-zero weather and frost hit the Minas Gerais state of Brazil, the world's largest coffee producer, damaging about 30% of local coffee trees. As a result, coffee prices have risen significantly due to the damage, and farmers with severe damage can produce coffee only after three years for crops to recover, which is expected to cause long-term damage. In this paper, we tried to predict frost using frost generation data and weather observation data provided by the Korea Meteorological Administration to prevent severe frost. A model was constructed by reflecting weather factors such as wind speed, temperature, humidity, precipitation, and cloudiness. Using XGB(eXtreme Gradient Boosting), SVM(Support Vector Machine), Random Forest, and MLP(Multi Layer perceptron) models, various hyper parameters were applied as training data to select the best model for each model. Finally, the results were evaluated as accuracy(acc) and CSI(Critical Success Index) in test data. XGB was the best model compared to other models with 90.4% ac and 64.4% CSI, followed by SVM with 89.7% ac and 61.2% CSI. Random Forest and MLP showed similar performance with about 89% ac and about 60% CSI.

Machine Learning-Based Prediction of COVID-19 Severity and Progression to Critical Illness Using CT Imaging and Clinical Data

  • Subhanik Purkayastha;Yanhe Xiao;Zhicheng Jiao;Rujapa Thepumnoeysuk;Kasey Halsey;Jing Wu;Thi My Linh Tran;Ben Hsieh;Ji Whae Choi;Dongcui Wang;Martin Vallieres;Robin Wang;Scott Collins;Xue Feng;Michael Feldman;Paul J. Zhang;Michael Atalay;Ronnie Sebro;Li Yang;Yong Fan;Wei-hua Liao;Harrison X. Bai
    • Korean Journal of Radiology
    • /
    • v.22 no.7
    • /
    • pp.1213-1224
    • /
    • 2021
  • Objective: To develop a machine learning (ML) pipeline based on radiomics to predict Coronavirus Disease 2019 (COVID-19) severity and the future deterioration to critical illness using CT and clinical variables. Materials and Methods: Clinical data were collected from 981 patients from a multi-institutional international cohort with real-time polymerase chain reaction-confirmed COVID-19. Radiomics features were extracted from chest CT of the patients. The data of the cohort were randomly divided into training, validation, and test sets using a 7:1:2 ratio. A ML pipeline consisting of a model to predict severity and time-to-event model to predict progression to critical illness were trained on radiomics features and clinical variables. The receiver operating characteristic area under the curve (ROC-AUC), concordance index (C-index), and time-dependent ROC-AUC were calculated to determine model performance, which was compared with consensus CT severity scores obtained by visual interpretation by radiologists. Results: Among 981 patients with confirmed COVID-19, 274 patients developed critical illness. Radiomics features and clinical variables resulted in the best performance for the prediction of disease severity with a highest test ROC-AUC of 0.76 compared with 0.70 (0.76 vs. 0.70, p = 0.023) for visual CT severity score and clinical variables. The progression prediction model achieved a test C-index of 0.868 when it was based on the combination of CT radiomics and clinical variables compared with 0.767 when based on CT radiomics features alone (p < 0.001), 0.847 when based on clinical variables alone (p = 0.110), and 0.860 when based on the combination of visual CT severity scores and clinical variables (p = 0.549). Furthermore, the model based on the combination of CT radiomics and clinical variables achieved time-dependent ROC-AUCs of 0.897, 0.933, and 0.927 for the prediction of progression risks at 3, 5 and 7 days, respectively. Conclusion: CT radiomics features combined with clinical variables were predictive of COVID-19 severity and progression to critical illness with fairly high accuracy.

Deep Learning-Assisted Diagnosis of Pediatric Skull Fractures on Plain Radiographs

  • Jae Won Choi;Yeon Jin Cho;Ji Young Ha;Yun Young Lee;Seok Young Koh;June Young Seo;Young Hun Choi;Jung-Eun Cheon;Ji Hoon Phi;Injoon Kim;Jaekwang Yang;Woo Sun Kim
    • Korean Journal of Radiology
    • /
    • v.23 no.3
    • /
    • pp.343-354
    • /
    • 2022
  • Objective: To develop and evaluate a deep learning-based artificial intelligence (AI) model for detecting skull fractures on plain radiographs in children. Materials and Methods: This retrospective multi-center study consisted of a development dataset acquired from two hospitals (n = 149 and 264) and an external test set (n = 95) from a third hospital. Datasets included children with head trauma who underwent both skull radiography and cranial computed tomography (CT). The development dataset was split into training, tuning, and internal test sets in a ratio of 7:1:2. The reference standard for skull fracture was cranial CT. Two radiology residents, a pediatric radiologist, and two emergency physicians participated in a two-session observer study on an external test set with and without AI assistance. We obtained the area under the receiver operating characteristic curve (AUROC), sensitivity, and specificity along with their 95% confidence intervals (CIs). Results: The AI model showed an AUROC of 0.922 (95% CI, 0.842-0.969) in the internal test set and 0.870 (95% CI, 0.785-0.930) in the external test set. The model had a sensitivity of 81.1% (95% CI, 64.8%-92.0%) and specificity of 91.3% (95% CI, 79.2%-97.6%) for the internal test set and 78.9% (95% CI, 54.4%-93.9%) and 88.2% (95% CI, 78.7%-94.4%), respectively, for the external test set. With the model's assistance, significant AUROC improvement was observed in radiology residents (pooled results) and emergency physicians (pooled results) with the difference from reading without AI assistance of 0.094 (95% CI, 0.020-0.168; p = 0.012) and 0.069 (95% CI, 0.002-0.136; p = 0.043), respectively, but not in the pediatric radiologist with the difference of 0.008 (95% CI, -0.074-0.090; p = 0.850). Conclusion: A deep learning-based AI model improved the performance of inexperienced radiologists and emergency physicians in diagnosing pediatric skull fractures on plain radiographs.

Adaptive Mass-Spring Method for the Synchronization of Dual Deformable Model (듀얼 가변형 모델 동기화를 위한 적응성 질량-스프링 기법)

  • Cho, Jae-Hwan;Park, Jin-Ah
    • Journal of the Korea Computer Graphics Society
    • /
    • v.15 no.3
    • /
    • pp.1-9
    • /
    • 2009
  • Traditional computer simulation uses only traditional input and output devices. With the recent emergence of haptic techniques, which can give users kinetic and tactile feedback, the field of computer simulation is diversifying. In particular, as the virtual-reality-based surgical simulation has been recognized as an effective training tool in medical education, the practical virtual simulation of surgery becomes a stimulating new research area. The surgical simulation framework should represent the realistic properties of human organ for the high immersion of a user interaction with a virtual object. The framework should make proper both haptic and visual feedback for high immersed virtual environment. However, one model may not be suitable to simulate both haptic and visual feedback because the perceptive channels of two feedbacks are different from each other and the system requirements are also different. Therefore, we separated two models to simulate haptic and visual feedback independently but at the same time. We propose an adaptive mass-spring method as a multi-modal simulation technique to synchronize those two separated models and present a framework for a dual model of simulation that can realistically simulate the behavior of the soft, pliable human body, along with haptic feedback from the user's interaction.

  • PDF

Research on ITB Contract Terms Classification Model for Risk Management in EPC Projects: Deep Learning-Based PLM Ensemble Techniques (EPC 프로젝트의 위험 관리를 위한 ITB 문서 조항 분류 모델 연구: 딥러닝 기반 PLM 앙상블 기법 활용)

  • Hyunsang Lee;Wonseok Lee;Bogeun Jo;Heejun Lee;Sangjin Oh;Sangwoo You;Maru Nam;Hyunsik Lee
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.11
    • /
    • pp.471-480
    • /
    • 2023
  • The Korean construction order volume in South Korea grew significantly from 91.3 trillion won in public orders in 2013 to a total of 212 trillion won in 2021, particularly in the private sector. As the size of the domestic and overseas markets grew, the scale and complexity of EPC (Engineering, Procurement, Construction) projects increased, and risk management of project management and ITB (Invitation to Bid) documents became a critical issue. The time granted to actual construction companies in the bidding process following the EPC project award is not only limited, but also extremely challenging to review all the risk terms in the ITB document due to manpower and cost issues. Previous research attempted to categorize the risk terms in EPC contract documents and detect them based on AI, but there were limitations to practical use due to problems related to data, such as the limit of labeled data utilization and class imbalance. Therefore, this study aims to develop an AI model that can categorize the contract terms based on the FIDIC Yellow 2017(Federation Internationale Des Ingenieurs-Conseils Contract terms) standard in detail, rather than defining and classifying risk terms like previous research. A multi-text classification function is necessary because the contract terms that need to be reviewed in detail may vary depending on the scale and type of the project. To enhance the performance of the multi-text classification model, we developed the ELECTRA PLM (Pre-trained Language Model) capable of efficiently learning the context of text data from the pre-training stage, and conducted a four-step experiment to validate the performance of the model. As a result, the ensemble version of the self-developed ITB-ELECTRA model and Legal-BERT achieved the best performance with a weighted average F1-Score of 76% in the classification of 57 contract terms.

Corporate Default Prediction Model Using Deep Learning Time Series Algorithm, RNN and LSTM (딥러닝 시계열 알고리즘 적용한 기업부도예측모형 유용성 검증)

  • Cha, Sungjae;Kang, Jungseok
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.4
    • /
    • pp.1-32
    • /
    • 2018
  • In addition to stakeholders including managers, employees, creditors, and investors of bankrupt companies, corporate defaults have a ripple effect on the local and national economy. Before the Asian financial crisis, the Korean government only analyzed SMEs and tried to improve the forecasting power of a default prediction model, rather than developing various corporate default models. As a result, even large corporations called 'chaebol enterprises' become bankrupt. Even after that, the analysis of past corporate defaults has been focused on specific variables, and when the government restructured immediately after the global financial crisis, they only focused on certain main variables such as 'debt ratio'. A multifaceted study of corporate default prediction models is essential to ensure diverse interests, to avoid situations like the 'Lehman Brothers Case' of the global financial crisis, to avoid total collapse in a single moment. The key variables used in corporate defaults vary over time. This is confirmed by Beaver (1967, 1968) and Altman's (1968) analysis that Deakins'(1972) study shows that the major factors affecting corporate failure have changed. In Grice's (2001) study, the importance of predictive variables was also found through Zmijewski's (1984) and Ohlson's (1980) models. However, the studies that have been carried out in the past use static models. Most of them do not consider the changes that occur in the course of time. Therefore, in order to construct consistent prediction models, it is necessary to compensate the time-dependent bias by means of a time series analysis algorithm reflecting dynamic change. Based on the global financial crisis, which has had a significant impact on Korea, this study is conducted using 10 years of annual corporate data from 2000 to 2009. Data are divided into training data, validation data, and test data respectively, and are divided into 7, 2, and 1 years respectively. In order to construct a consistent bankruptcy model in the flow of time change, we first train a time series deep learning algorithm model using the data before the financial crisis (2000~2006). The parameter tuning of the existing model and the deep learning time series algorithm is conducted with validation data including the financial crisis period (2007~2008). As a result, we construct a model that shows similar pattern to the results of the learning data and shows excellent prediction power. After that, each bankruptcy prediction model is restructured by integrating the learning data and validation data again (2000 ~ 2008), applying the optimal parameters as in the previous validation. Finally, each corporate default prediction model is evaluated and compared using test data (2009) based on the trained models over nine years. Then, the usefulness of the corporate default prediction model based on the deep learning time series algorithm is proved. In addition, by adding the Lasso regression analysis to the existing methods (multiple discriminant analysis, logit model) which select the variables, it is proved that the deep learning time series algorithm model based on the three bundles of variables is useful for robust corporate default prediction. The definition of bankruptcy used is the same as that of Lee (2015). Independent variables include financial information such as financial ratios used in previous studies. Multivariate discriminant analysis, logit model, and Lasso regression model are used to select the optimal variable group. The influence of the Multivariate discriminant analysis model proposed by Altman (1968), the Logit model proposed by Ohlson (1980), the non-time series machine learning algorithms, and the deep learning time series algorithms are compared. In the case of corporate data, there are limitations of 'nonlinear variables', 'multi-collinearity' of variables, and 'lack of data'. While the logit model is nonlinear, the Lasso regression model solves the multi-collinearity problem, and the deep learning time series algorithm using the variable data generation method complements the lack of data. Big Data Technology, a leading technology in the future, is moving from simple human analysis, to automated AI analysis, and finally towards future intertwined AI applications. Although the study of the corporate default prediction model using the time series algorithm is still in its early stages, deep learning algorithm is much faster than regression analysis at corporate default prediction modeling. Also, it is more effective on prediction power. Through the Fourth Industrial Revolution, the current government and other overseas governments are working hard to integrate the system in everyday life of their nation and society. Yet the field of deep learning time series research for the financial industry is still insufficient. This is an initial study on deep learning time series algorithm analysis of corporate defaults. Therefore it is hoped that it will be used as a comparative analysis data for non-specialists who start a study combining financial data and deep learning time series algorithm.

ViStoryNet: Neural Networks with Successive Event Order Embedding and BiLSTMs for Video Story Regeneration (ViStoryNet: 비디오 스토리 재현을 위한 연속 이벤트 임베딩 및 BiLSTM 기반 신경망)

  • Heo, Min-Oh;Kim, Kyung-Min;Zhang, Byoung-Tak
    • KIISE Transactions on Computing Practices
    • /
    • v.24 no.3
    • /
    • pp.138-144
    • /
    • 2018
  • A video is a vivid medium similar to human's visual-linguistic experiences, since it can inculcate a sequence of situations, actions or dialogues that can be told as a story. In this study, we propose story learning/regeneration frameworks from videos with successive event order supervision for contextual coherence. The supervision induces each episode to have a form of trajectory in the latent space, which constructs a composite representation of ordering and semantics. In this study, we incorporated the use of kids videos as a training data. Some of the advantages associated with the kids videos include omnibus style, simple/explicit storyline in short, chronological narrative order, and relatively limited number of characters and spatial environments. We build the encoder-decoder structure with successive event order embedding, and train bi-directional LSTMs as sequence models considering multi-step sequence prediction. Using a series of approximately 200 episodes of kids videos named 'Pororo the Little Penguin', we give empirical results for story regeneration tasks and SEOE. In addition, each episode shows a trajectory-like shape on the latent space of the model, which gives the geometric information for the sequence models.

The Influence of Self-esteem and Optimism on the Self-leadership of Multicultural Family Home-visit Instructors (다문화가족 방문교육지도사의 자존감 및 낙관성이 셀프리더십에 미치는 영향)

  • Kwon, Ki-Nam;Hwang, Hae Shin;Chae, Jin-Young;Kim, Hera;Kang, Bog-Jeong;Suh, Ju-Hyun
    • Journal of Families and Better Life
    • /
    • v.35 no.2
    • /
    • pp.63-75
    • /
    • 2017
  • The purpose of this study was to investigate the differences in optimism, self-esteem and self-leadership according to age, monthly income, and teaching experiences of multicultural family home-visit instructors and the influence of optimism and self-esteem on self-leadership. 668 home-visit instructors participated in the online survey from 140 multicultural family support centers in Seoul, 6 metropolitan cities, 9 provinces, and other cities and counties. Data were analyzed through frequence, percentages, Pearson's correlations, One-way ANOVA, $Scheff{\acute{e}}$ post-hoc test, and stepwise multi-regression using SPSS 21.0. The main findings are as follows. First, there were significant differences in optimism and self-esteem according to age and monthly income. Second, there were significant differences in self-leadership according to age and home-visit teaching experiences. Third, the stepwise multiple regression model showed that optimism, self-esteem and the individual variables had an influence on the self-leadership of home-visit instructor's self-expectation. These results suggest that self-esteem and optimism are important precursors of self-leadership and self-leadership training based on self-esteem and optimism is necessary for self-leadership enhancement of home-visit instructors.