• Title/Summary/Keyword: Multi-Model Ensemble

검색결과 98건 처리시간 0.035초

기계학습을 이용한 염화물 확산계수 예측모델 개발 (Development of Prediction Model of Chloride Diffusion Coefficient using Machine Learning)

  • 김현수
    • 한국공간구조학회논문집
    • /
    • 제23권3호
    • /
    • pp.87-94
    • /
    • 2023
  • Chloride is one of the most common threats to reinforced concrete (RC) durability. Alkaline environment of concrete makes a passive layer on the surface of reinforcement bars that prevents the bar from corrosion. However, when the chloride concentration amount at the reinforcement bar reaches a certain level, deterioration of the passive protection layer occurs, causing corrosion and ultimately reducing the structure's safety and durability. Therefore, understanding the chloride diffusion and its prediction are important to evaluate the safety and durability of RC structure. In this study, the chloride diffusion coefficient is predicted by machine learning techniques. Various machine learning techniques such as multiple linear regression, decision tree, random forest, support vector machine, artificial neural networks, extreme gradient boosting annd k-nearest neighbor were used and accuracy of there models were compared. In order to evaluate the accuracy, root mean square error (RMSE), mean square error (MSE), mean absolute error (MAE) and coefficient of determination (R2) were used as prediction performance indices. The k-fold cross-validation procedure was used to estimate the performance of machine learning models when making predictions on data not used during training. Grid search was applied to hyperparameter optimization. It has been shown from numerical simulation that ensemble learning methods such as random forest and extreme gradient boosting successfully predicted the chloride diffusion coefficient and artificial neural networks also provided accurate result.

기후변화에 따른 국내 키위 품종 '해금'의 개화시기 변동과 전망에 대한 불확실성: 전남 키위 주산지역을 중심으로 (Preliminary Result of Uncertainty on Variation of Flowering Date of Kiwifruit: Case Study of Kiwifruit Growing Area of Jeonlanam-do)

  • 김광형;정여민;조윤섭;정유란
    • 한국농림기상학회지
    • /
    • 제18권1호
    • /
    • pp.42-54
    • /
    • 2016
  • 최근 국내에서 재배면적이 증가하고 있는 골드키위 해금의 개화시기를 예측할 수 있는 휴면시계모형의 모수를 추정하고 해금 주산지에서 미래 기후변화에 의한 개화시기의 변화와 불확실성을 전망하고자 본 연구를 수행하였다. 해금 개화시기 예측을 위한 휴면시계모형의 모수는 $6.3^{\circ}C$(base temperature, $T_b$), 102.5(chill requirement, $R_c$), 575(heat requirement, $R_h$)로 추정되었다. 2가지 방법으로 추정된 모수를 검증하였는데, 4개 표준기상관측소의 3년 동안(2013-2015)의 기상자료로부터 해금의 개화시기를 예측하고 25개 해금 노지 재배농가에서 수집된 2년 동안(2014-2015)의 관측 개화일과 비교한 결과 5.2일의 추정오차를 보였다. 또한 격자형 기후표면에 의해 계산된 격자형 개화시기 표면으로부터 25개 해금 노지 재배농가가 위치한 격자들의 예상 개화시기를 추출하여 비교한 결과, 3.4일의 추정오차를 보였다. 이 모수를 2021-2040년 동안의 6개 GCMs의 미래 기후변화 시나리오와 결합하여 해금의 미래 개화시기를 예측하였다. 전남 키위 주산지역에서 가장 빠른 개화시기는 4월 21일(111일), 가장 늦은 개화시기는 6월 2일(153일)로 나타났다. 6개 개별 GCM 중에서 RCP 4.5의 CanESM2과 GFDL-ESM2G, RCP 8.5의 HadGEM2-AO에서 20년 후 전남 키위 주산지역에서 해금의 개화시기는 현재보다 2-3일 단축될 뿐 현재와 큰 차이가 발생하지 않는 것으로 전망되었다. 그러나 RCP 4.5와 RCP 8.5의 6개 GCMs의 평균 미래 개화시기에서 현재보다 10일 이상 단축되고 현재와 같은 개화시기는 전북 및 충남 해안지역 등 북쪽으로 약 150km 이상까지 확대될 수 있는 것으로 전망되었다. 본 연구의 예비 결과는 국내 육종 과수의 생장발육 및 개화시기 예측 등을 위한 생물계절 연구와 기후변화에 대한 영향평가 개선에 기여할 수 있을 것으로 기대한다.

EPC 프로젝트의 위험 관리를 위한 ITB 문서 조항 분류 모델 연구: 딥러닝 기반 PLM 앙상블 기법 활용 (Research on ITB Contract Terms Classification Model for Risk Management in EPC Projects: Deep Learning-Based PLM Ensemble Techniques)

  • 이현상;이원석;조보근;이희준;오상진;유상우;남마루;이현식
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제12권11호
    • /
    • pp.471-480
    • /
    • 2023
  • 국내 건설수주 규모는 2013년 91.3조원에서 2021년 총 212조원으로 특히 민간부문에서 크게 성장하였다. 국내외 시장 규모가 성장하면서, EPC(Engineering, Procurement, Construction) 프로젝트의 규모와 복잡성이 더욱 증가되고, 이에 프로젝트 관리 및 ITB(Invitation to Bid) 문서의 위험 관리가 중요한 이슈가 되고 있다. EPC 프로젝트 발주 이후 입찰 절차에서 실제 건설 회사에게 부여되는 대응 시간은 한정적일 뿐만 아니라, 인력 및 비용의 문제로 ITB 문서 계약 조항의 모든 리스크를 검토하는데 매우 어려움이 있다. 기존 연구에서는 이와 같은 문제를 해결하고자 EPC 계약 문서의 위험 조항을 범주화하고, 이를 AI 기반으로 탐지하려는 시도가 있었으나, 이는 레이블링 데이터 활용의 한계와 클래스 불균형과 같은 데이터 측면의 문제로 실무에서 활용할 수 있는 수준의 지원 시스템으로 활용하기 어려운 상황이다. 따라서 본 연구는 기존 연구와 같이 위험 조항 자체를 정의하고 분류하는 것이 아니라, FIDIC Yellow 2017(국제 컨설팅엔지니어링 연맹 표준 계약 조건) 기준 계약 조항을 세부적으로 분류할 수 있는 AI 모델을 개발하고자 한다. 프로젝트의 규모, 유형에 따라서 세부적으로 검토해야 하는 계약 조항이 다를 수 있기 때문에 이와 같은 다중 텍스트 분류 기능이 필요하다. 본 연구는 다중 텍스트 분류 모델의 성능 고도화를 위해서 최근 텍스트 데이터의 컨텍스트를 효율적으로 학습할 수 있는 ELECTRA PLM(Pre-trained Language Model)을 사전학습 단계부터 개발하고, 해당 모델의 성능을 검증하기 위해서 총 4단계 실험을 진행했다. 실험 결과, 자체 개발한 ITB-ELECTRA 모델 및 Legal-BERT의 앙상블 버전이 57개 계약 조항 분류에서 가중 평균 F1-Score 기준 76%로 가장 우수한 성능을 달성했다.

AOGCM에 의해 모의된 동아시아지역의 강수 연변동성에 대한 불확실성 평가 (An Uncertainty Assessment for Annual Variability of Precipitation Simulated by AOGCMs Over East Asia)

  • 신진호;이효신;김민지;권원태
    • 대기
    • /
    • 제20권2호
    • /
    • pp.111-130
    • /
    • 2010
  • An uncertainty assessment for precipitation datasets simulated by Atmosphere-Ocean Coupled General Circulation Model (AOGCM) is conducted to provide reliable climate scenario over East Asia. Most of results overestimate precipitation compared to the observational data (wet bias) in spring-fall-winter, while they underestimate precipitation (dry bias) in summer in East Asia. Higher spatial resolution model shows better performances in simulation of precipitation. To assess the uncertainty of spatiotemporal precipitation in East Asia, the cyclostationary empirical orthogonal function (CSEOF) analysis is applied. An annual cycle of precipitation obtained from the CSEOF analysis accounts for the biggest variability in its total variability. A comparison between annual cycles of observed and modeled precipitation anomalies shows distinct differences: 1) positive precipitation anomalies of the multi-model ensemble (MME) for 20 models (thereafter MME20) in summer locate toward the north compared to the observational data so that it cannot explain summer monsoon rainfalls across Korea and Japan. 2) The onset of summer monsoon in MME20 in Korean peninsula starts earlier than observed one. These differences show the uncertainty of modeled precipitation. Also the comparison provides the criteria of annual cycle and correlation between modeled and observational data which helps to select best models and generate a new MME, which is better than the MME20. The spatiotemporal deviation of precipitation is significantly associated with lower-level circulations. In particular, lower-level moisture transports from the warm pool of the western Pacific and corresponding moisture convergence significantly are strongly associated with summer rainfalls. These lower-level circulations physically consistent with precipitation give insight into description of the reason in the monsoon of East Asia why behaviors of individually modeled precipitation differ from that of observation.

불확실성을 고려한 논벼 증발산량 기후변화 영향 평가 (Assessing the Climate Change Impacts on Paddy Rice Evapotranspiration Considering Uncertainty)

  • 최순군;정재학;조재필;허승오;최동호;김민경
    • 한국기후변화학회지
    • /
    • 제9권2호
    • /
    • pp.143-156
    • /
    • 2018
  • Evapotranspiration is a key element in designing and operating agricultural hydraulic structures. The profound effect of climate change to local agro-hydrological systems makes it inevitable to study the potential variability in evapotranspiration rate in order to develop policies on future agricultural water management as well as to evaluate changes in agricultural environment. The APEX-Paddy model was used to simulate local evapotranspiration responses to climate change scenarios. Nine Global Climate Models(GCMs) downscaled using a non-parametric quantile mapping method and a Multi?Model Ensemble method(MME) were used for an uncertainty analysis in the climate scenarios. Results indicate that APEX-Paddy and the downscaled 9 GCMs reproduce evapotranspiration accurately for historical period(1976~2005). For future periods, simulated evapotranspiration rate under the RCP 4.5 scenario showed increasing trends by -1.31%, 2.21% and 4.32% for 2025s(2011~2040), 2055s(2041~2070) and 2085s(2071~2100), respectively, compared with historical(441.6 mm). Similar trends were found under the RCP 8.5 scenario with the rates of increase by 0.00%, 4.67%, and 7.41% for the near?term, mid?term, and long?term periods. Monthly evapotranspiration was predicted to be the highest in August, July was the month having a strong upward trend while. September and October were the months showing downward trends in evapotranspiration are mainly resulted from the shortening of the growth period of paddy rice due to temperature increase and stomatal closer as ambient $CO_2$ concentration increases in the future.

The evaluation of Spectral Vegetation Indices for Classification of Nutritional Deficiency in Rice Using Machine Learning Method

  • Jaekyeong Baek;Wan-Gyu Sang;Dongwon Kwon;Sungyul Chanag;Hyeojin Bak;Ho-young Ban;Jung-Il Cho
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2022년도 추계학술대회
    • /
    • pp.88-88
    • /
    • 2022
  • Detection of stress responses in crops is important to diagnose crop growth and evaluate yield. Also, the multi-spectral sensor is effectively known to evaluate stress caused by nutrient and moisture in crops or biological agents such as weeds or diseases. Therefore, in this experiment, multispectral images were taken by an unmanned aerial vehicle(UAV) under field condition. The experiment was conducted in the long-term fertilizer field in the National Institute of Crop Science, and experiment area was divided into different status of NPK(Control, N-deficiency, P-deficiency, K-deficiency, Non-fertilizer). Total 11 vegetation indices were created with RGB and NIR reflectance values using python. Variations in nutrient content in plants affect the amount of light reflected or absorbed for each wavelength band. Therefore, the objective of this experiment was to evaluate vegetation indices derived from multispectral reflectance data as input into machine learning algorithm for the classification of nutritional deficiency in rice. RandomForest model was used as a representative ensemble model, and parameters were adjusted through hyperparameter tuning such as RandomSearchCV. As a result, training accuracy was 0.95 and test accuracy was 0.80, and IPCA, NDRE, and EVI were included in the top three indices for feature importance. Also, precision, recall, and f1-score, which are indicators for evaluating the performance of the classification model, showed a distribution of 0.7-0.9 for each class.

  • PDF

CORDEX-EA 지역기후모형이 모사한 한반도 주변해 기후평균 표층 바람 평가 (Evaluation of Climatological Mean Surface Winds over Korean Waters Simulated by CORDEX-EA Regional Climate Models)

  • 최원근;신호정;장찬주
    • 대기
    • /
    • 제29권2호
    • /
    • pp.115-129
    • /
    • 2019
  • Surface winds over the ocean influence not only the climate change through air-sea interactions but the coastal erosion through the changes in wave height and direction. Thus, demands on a reliable projection of future changes in surface winds have been increasing in various fields. For the future projections, climate models have been widely used and, as a priori, their simulations of surface wind are required to be evaluated. In this study, we evaluate the climatological mean surface winds over the Korean Waters simulated by five regional climate models participating in Coordinated Regional Climate Downscaling Experiment (CORDEX) for East Asia (EA), an international regional climate model inter-comparison project. Compared with the ERA-interim reanalysis data, the CORDEX-EA models, except for HadGEM3-RA, produce stronger wind both in summer and winter. The HadGEM3-RA underestimates the wind speed and inadequately simulate the spatial distribution especially in summer. This summer wind error appears to be coincident with mean sea-level pressure in the North Pacific. For wind direction, all of the CORDEX-EA models simulate the well-known seasonal reversal of surface wind similar to the ERA-interim. Our results suggest that especially in summer, large-scale atmospheric circulation, downscaled by regional models with spectral nudging, significantly affect the regional surface wind on its pattern and strength.

Assessment of Historical and Future Climatic Trends in Seti-Gandaki Basin of Nepal. A study based on CMIP6 Projections

  • Bastola Shiksha;Cho Jaepil;Jung Younghun
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2023년도 학술발표회
    • /
    • pp.162-162
    • /
    • 2023
  • Climate change is a complex phenomenon having its impact on diverse sectors. Temperature and precipitation are two of the most fundamental variables used to characterize climate, and changes in these variables can have significant impacts on ecosystems, agriculture, and human societies. This study evaluated the historical (1981-2010) and future (2011-2100) climatic trends in the Seti-Gandaki basin of Nepal based on 5 km resolution Multi Model Ensemble (MME) of 18 Global Climate Models (GCMs) from the Coupled Model Intercomparison Project Phase 6 (CMIP6) for SSP1-2.6, SSP2-4.5 and SSP5-85 scenarios. For this study, ERA5 reanalysis dataset is used for historical reference dataset instead of observation dataset due to a lack of good observation data in the study area. Results show that the basin has experienced continuous warming and an increased precipitation pattern in the historical period, and this rising trend is projected to be more prominent in the future. The Seti basin hosts 13 operational hydropower projects of different sizes, with 10 more planned by the government. Consequently, the findings of this study could be leveraged to design adaptation measures for existing hydropower schemes and provide a framework for policymakers to formulate climate change policies in the region. Furthermore, the methodology employed in this research could be replicated in other parts of the country to generate precise climate projections and offer guidance to policymakers in devising sustainable development plans for sectors like irrigation and hydropower.

  • PDF

Investigating the future changes of extreme precipitation indices in Asian regions dominated by south Asian summer monsoon

  • Deegala Durage Danushka Prasadi Deegala;Eun-Sung Chung
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2023년도 학술발표회
    • /
    • pp.174-174
    • /
    • 2023
  • The impact of global warming on the south Asian summer monsoon is of critical importance for the large population of this region. This study aims to investigate the future changes of the precipitation extremes during pre-monsoon and monsoon, across this region in a more organized regional structure. The study area is divided into six major divisions based on the Köppen-Geiger's climate structure and 10 sub-divisions considering the geographical locations. The future changes of extreme precipitation indices are analyzed for each zone separately using five indices from ETCCDI (Expert Team on Climate Change Detection and Indices); R10mm, Rx1day, Rx5day, R95pTOT and PRCPTOT. 10 global climate model (GCM) outputs from the latest CMIP6 under four combinations of SSP-RCP scenarios (SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5) are used. The GCMs are bias corrected using nonparametric quantile transformation based on the smoothing spline method. The future period is divided into near future (2031-2065) and far future (2066-2100) and then the changes are compared based on the historical period (1980-2014). The analysis is carried out separately for pre-monsoon (March, April, May) and monsoon (June, July, August, September). The methodology used to compare the changes is probability distribution functions (PDF). Kernel density estimation is used to plot the PDFs. For this study we did not use a multi-model ensemble output and the changes in each extreme precipitation index are analyzed GCM wise. From the results it can be observed that the performance of the GCMs vary depending on the sub-zone as well as on the precipitation index. Final conclusions are made by removing the poor performing GCMs and by analyzing the overall changes in the PDFs of the remaining GCMs.

  • PDF

가뭄의 전이 현상을 고려한 수문학적 가뭄에 대한 베이지안 네트워크 기반 확률 예측 (Bayesian networks-based probabilistic forecasting of hydrological drought considering drought propagation)

  • 신지예;권현한;이주헌;김태웅
    • 한국수자원학회논문집
    • /
    • 제50권11호
    • /
    • pp.769-779
    • /
    • 2017
  • 최근 우리나라에서 빈번하게 발생되는 가뭄으로 인하여 많은 피해가 발생하고 있으며, 이에 대한 사전대응의 필요성이 커지고 있다. 가뭄에 대한 효과적인 사전대응을 위해서는 신뢰성 있는 가뭄 예측 정보가 필수적이다. 본 연구에서는 수문학적 가뭄에 대한 확률론적 예측을 수행하기 위하여 가뭄의 전이현상을 베이지안 네트워크 모형에 반영하였다. 가뭄의 전이현상을 고려한 베이지안 네트워크 기반의 가뭄 예측 모형(PBNDF)은 과거, 현재, 미래에 대한 다중 모형 앙상블 예측결과와 가뭄전이 관계를 결합하여 새로운 수문학적 가뭄 예측 결과를 생산하도록 구축되었다. 본 연구에서 PBNDF 모형은 파머수문학적 가뭄지수를 활용하여 낙동강 유역의 10개 지점을 대상으로 가뭄을 확률적으로 예측하는데 적용되었다. PBNDF 모형의 ROC 분석 결과 ROC 점수가 0.5 이상의 유의한 결과를 나타내 실제 예측 모형으로 활용가능하다는 것을 확인할 수 있었다. 또한, 기존에 개발된 모형(지속성 예측, 베이지안 네트워크 예측 모형)과 평균제곱오차의 제곱근(RMSE), 기술 점수(SS)를 활용하여 비교를 수행하였으며, 그 결과 PBNDF 모형의 RMSE는 상대적으로 낮은 값을 가지며, SS는 약 0.1~0.15 정도 높은 것으로 나타나 예측성능이 향상되었다는 것을 확인할 수 있었다.