• Title/Summary/Keyword: Multi-Modal Sensor

Search Result 58, Processing Time 0.029 seconds

Optimal Vibration Control of a Plate Using Optical Fiber Sensor and Piezoelectric Actuator (광섬유 센서와 압전 작동기를 이용한 평판의 최적 진동 제어)

  • Kim, Do-Hyung;Han, Jae-Hung;Yang, Seung-Man;Kim, Dae-Hyun;Lee, In;Kim, Chun-Gon;Hong, Chang-Sun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.4
    • /
    • pp.294-301
    • /
    • 2002
  • Vibration control of a plate using an optical fiber sensor and a piezoelectric actuator is considered in the present study, An aluminum plate with attached Extrinsic Fabry-Perot Interferometer (EFPI) and piezoelectric actuator is prepared for experimental investigation. Vibration level of EFPI that can represent the mechanical strain without severe distortion Is validated by forced nitration experiment. A linear time invariant system model is constructed based on the experimentally obtained frequency responses, and an optimal controller is designed for the multi-modal vibration suppression. Control performance is presented in frequency and time domains. It is found that the nitration level of the first three modes can be greatly reduced. The effect of low-pass filtering used to eliminate high frequency noise on the stability and control performance is also considered.

Multi-Modal Biometries System for Ubiquitous Sensor Network Environment (유비쿼터스 센서 네트워크 환경을 위한 다중 생체인식 시스템)

  • Noh, Jin-Soo;Rhee, Kang-Hyeon
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.44 no.4 s.316
    • /
    • pp.36-44
    • /
    • 2007
  • In this paper, we implement the speech & face recognition system to support various ubiquitous sensor network application services such as switch control, authentication, etc. using wireless audio and image interface. The proposed system is consist of the H/W with audio and image sensor and S/W such as speech recognition algorithm using psychoacoustic model, face recognition algorithm using PCA (Principal Components Analysis) and LDPC (Low Density Parity Check). The proposed speech and face recognition systems are inserted in a HOST PC to use the sensor energy effectively. And improve the accuracy of speech and face recognition, we implement a FEC (Forward Error Correction) system Also, we optimized the simulation coefficient and test environment to effectively remove the wireless channel noises and correcting wireless channel errors. As a result, when the distance that between audio sensor and the source of voice is less then 1.5m FAR and FRR are 0.126% and 7.5% respectively. The face recognition algorithm step is limited 2 times, GAR and FAR are 98.5% and 0.036%.

Investigation of the Thermal Mode-based Thermal Error Prediction for the Multi-heat Sources Model (다중열원모델의 열모드기반 열변위오차 예측)

  • Han, Jun An;Kim, Gyu Ha;Lee, Sun-Kyu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.7
    • /
    • pp.754-761
    • /
    • 2013
  • Thermal displacement is an important issue in machine tool systems. During the last several decades, thermal error compensation technology has significantly reduced thermal distortion error; this success has been attributed to the development of a precise, robust thermal error model. A major advantage of using the thermal error model is instant compensation for the control variables during the modeling process. However, successful application of thermal error modeling requires correct determination of the temperature sensor placement. In this paper, a procedure for predicting thermal-mode-based thermal error is introduced. Based on this thermal analysis, temperature sensors were positioned for multiple heat-source models. The performance of the sensors based on thermal-mode error analysis, was compared with conventional methods through simulation and experiments, for the case of a slide table in a transient state. Our results show that for predicting thermal error the proposed thermal model is more accurate than the conventional model.

Probabilistic Modeling of Fish Growth in Smart Aquaculture Systems

  • Jongwon Kim;Eunbi Park;Sungyoon Cho;Kiwon Kwon;Young Myoung Ko
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.8
    • /
    • pp.2259-2277
    • /
    • 2023
  • We propose a probabilistic fish growth model for smart aquaculture systems equipped with IoT sensors that monitor the ecological environment. As IoT sensors permeate into smart aquaculture systems, environmental data such as oxygen level and temperature are collected frequently and automatically. However, there still exists data on fish weight, tank allocation, and other factors that are collected less frequently and manually by human workers due to technological limitations. Unlike sensor data, human-collected data are hard to obtain and are prone to poor quality due to missing data and reading errors. In a situation where different types of data are mixed, it becomes challenging to develop an effective fish growth model. This study explores the unique characteristics of such a combined environmental and weight dataset. To address these characteristics, we develop a preprocessing method and a probabilistic fish growth model using mixed data sampling (MIDAS) and overlapping mixtures of Gaussian processes (OMGP). We modify the OMGP to be applicable to prediction by setting a proper prior distribution that utilizes the characteristic that the ratio of fish groups does not significantly change as they grow. We conduct a numerical study using the eel dataset collected from a real smart aquaculture system, which reveals the promising performance of our model.

A Study on Technology Trends and Researches for Ubiquitous Devices (유비쿼터스 디바이스 기술동향과 연구실태에 관한 조사)

  • Jin, Tae-Seok
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.10a
    • /
    • pp.836-841
    • /
    • 2008
  • Ubiquitous computing represents the most explicit attempt yet to move computing technology beyond the confines of tool usage towards a pervasive penetration of everyday life. In this report, as a general introduction of Ubiquitous computing, a trend of Ubiquitous computing devices is proposed for the applied technology fields and our everyday life. We outline a broad analysis of this technology based on a close examination of the researches advancing it. After introducing a framework for understanding modem device technology, we develop an interpretation of ubiquitous computing concentrating on its guiding principles, technological infrastructure, and trends.

  • PDF

Implementation of Object Feature Extraction within Image for Object Tracking (객체 추적을 위한 영상 내의 객체 특징점 추출 알고리즘 구현)

  • Lee, Yong-Hwan;Kim, Youngseop
    • Journal of the Semiconductor & Display Technology
    • /
    • v.17 no.3
    • /
    • pp.113-116
    • /
    • 2018
  • This paper proposes a mobile image search system which uses a sensor information of smart phone, and enables running in a variety of environments, which is implemented on Android platform. The implemented system deals with a new image descriptor using combination of the visual feature (CEDD) with EXIF attributes in the target of JPEG image, and image matching scheme, which is optimized to the mobile platform. Experimental result shows that the proposed method exhibited a significant improved searching results of around 80% in precision in the large image database. Considering the performance such as processing time and precision, we think that the proposed method can be used in other application field.

Dual Foot-PDR System Considering Lateral Position Error Characteristics

  • Lee, Jae Hong;Cho, Seong Yun;Park, Chan Gook
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.11 no.1
    • /
    • pp.35-44
    • /
    • 2022
  • In this paper, a dual foot (DF)-PDR system is proposed for the fusion of integration (IA)-based PDR systems independently applied on both shoes. The horizontal positions of the two shoes estimated from each PDR system are fused based on a particle filter. The proposed method bounds the position error even if the walking time increases without an additional sensor. The distribution of particles is a non-Gaussian distribution to express the lateral error due to systematic drift. Assuming that the shoe position is the pedestrian position, the multi-modal position distribution can be fused into one using the Gaussian sum. The fused pedestrian position is used as a measurement of each particle filter so that the position error is corrected. As a result, experimental results show that position of pedestrians can be effectively estimated by using only the inertial sensors attached to both shoes.

Large-scale Language-image Model-based Bag-of-Objects Extraction for Visual Place Recognition (영상 기반 위치 인식을 위한 대규모 언어-이미지 모델 기반의 Bag-of-Objects 표현)

  • Seung Won Jung;Byungjae Park
    • Journal of Sensor Science and Technology
    • /
    • v.33 no.2
    • /
    • pp.78-85
    • /
    • 2024
  • We proposed a method for visual place recognition that represents images using objects as visual words. Visual words represent the various objects present in urban environments. To detect various objects within the images, we implemented and used a zero-shot detector based on a large-scale image language model. This zero-shot detector enables the detection of various objects in urban environments without additional training. In the process of creating histograms using the proposed method, frequency-based weighting was applied to consider the importance of each object. Through experiments with open datasets, the potential of the proposed method was demonstrated by comparing it with another method, even in situations involving environmental or viewpoint changes.

Dynamic Modeling, Active Vibration Controller Design and Experiments For Cylindrical Shell equipped with MFC Actuators (MFC 작동기가 부착된 실린더 쉘 구조물의 동적 모델링과 능동진동제어기 설계 및 실험)

  • Kwak, Moon-K.;Jung, Moon-San
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.565-573
    • /
    • 2007
  • This paper is concerned with the dynamic modeling, active vibration controller design and experiments for a cylindrical shell equipped with MFC actuators. The dynamic model was derived by using Rayleigh-Ritz method based on Donnel-Mushtari shell theory. The actuator and sensors for the MFC actuator equations were derived based on pin-force model. The equations of motion were then reduced to modal equations of motion by considering the modes of interest. The sensor equations were also converted to a reduced form. An aluminum shell was fabricated to demonstrate the effectiveness of modeling and control techniques. The boundary conditions at both ends of the shell were assumed to be shear diaphragm. Theoretical natural frequencies were calculated and compared to experimental result. It was observed that the theoretical result is in good agreement with experimental result for the first two modes. The multi-input and multi-output positive position feedback controller, which can cope with first two modes, was then designed based on the blockinverse theory and implemented using DSP. It was found from experiment that vibrations can be successfully suppressed.

  • PDF

Damage detection for a beam under transient excitation via three different algorithms

  • Zhao, Ying;Noori, Mohammad;Altabey, Wael A.
    • Structural Engineering and Mechanics
    • /
    • v.64 no.6
    • /
    • pp.803-817
    • /
    • 2017
  • Structural health monitoring has increasingly been a focus within the civil engineering research community over the last few decades. With increasing application of sensor networks in large structures and infrastructure systems, effective use and development of robust algorithms to analyze large volumes of data and to extract the desired features has become a challenging problem. In this paper, we grasp some precautions and key points of the signal processing approach, wavelet, establish a relative reliable framework, and analyze three problems that require attention when applying wavelet based damage detection approach. The cases studies how to use optimal scales for extracting mode shapes and modal curvatures in a reinforced concrete beam and how to effectively identify damages using maximum curves of wavelet coefficient differences. Moreover, how to make a recognition based on the wavelet multi-resolution analysis, wavelet packet energy, and fuzzy sets is a meaningful topic that has been addressed in this work. The relative systematic work that compasses algorithms, structures and evaluation paves a way to a framework regarding effective structural health monitoring, orientation, decision and action.