• Title/Summary/Keyword: Multi-MW

Search Result 131, Processing Time 0.024 seconds

Structural and Vibration Analyses of 3MW Class Wind-Turbine Blade Using CAE Technique (CAE 기법을 활용한 3MW급 풍력발전기 로터의 구조 및 진동해석)

  • Kim, Yo-Han;Park, Hyo-Geun;Kim, Dong-Hyun;Kim, Dong-Man;Hwang, Byoung-Sun;Park, Ji-Sang;Jung, Sung-Hoon
    • The KSFM Journal of Fluid Machinery
    • /
    • v.11 no.4
    • /
    • pp.22-31
    • /
    • 2008
  • In this study, computer applied engineering (CAE) techniques are fully used to conduct structural and dynamic analyses of a huge composite rotor blade. Computational fluid dynamics is used to predict aerodynamic load of the rotating wind-turbine blade model. Static and dynamic structural analyses are conducted based on finite element method for composite laminates and multi-body dynamic simulation tools. Various numerical results for aerodynamic load, static stress, buckling and dynamic analyses are presented and characteristics of structural behaviors are investigated herein.

Solid Oxide Fuel Cells for Power Generation and Hydrogen Production

  • Minh, Nguyen Q.
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.1
    • /
    • pp.1-7
    • /
    • 2010
  • Solid oxide fuel cells (SOFCs) have been under development for a variety of power generation applications. Power system sizes considered range from small watt-size units (e.g., 50-W portable devices) to very large multi-megawatt systems (e.g., 500-MW base load power plants). Because of the reversibility of its operation, the SOFC has also been developed to operate under reverse or electrolysis mode for hydrogen production from steam (In this case, the cell is referred to as solid oxide electrolysis cell or SOEC.). Potential applications for the SOEC include on-site and large-scale hydrogen production. One critical requirement for practical uses of these systems is long-term performance stability under specified operating conditions. Intrinsic material properties and operating environments can have significant effects on cell performance stability, thus performance degradation rate. This paper discusses potential applications of the SOFC/SOEC, technological status and current research and development (R&D) direction, and certain aspects of long-term performance degradation in the operation of SOFCs/SOECs for power generation/hydrogen production.

An Experimental study on the NOx Formation of LNG Flame in Fuel Staged Combustor (다단 연소기를 이용한 LNG 화염의 NOx 발생에 관한 실험적 연구)

  • Han, Ji-Woong;Ahn, Kook-Young;Kim, Han-Seok;Chung, Jin-Do;Park, Kyung-Jin
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.161-166
    • /
    • 2001
  • An Experimental study on the NOx formation of LNG flame in fuel staged combustor has been studied. The design concept of multi fuel/air staged combustor is creation of two separate flame, a primary flame is act as a pilot flame for the secondary combustion stage combustion zone, where most of fuel burns. Experiments were performed on a semi-industrial scale (thermal input 0.233 MW) in a laboratory furnace and Liquefied Natural Gas(LNG) was used as primary and secondary fuels. The study included parametric study to identify the optimum operating conditions which are primary/secondary fuel ratio, and primary/secondary air ratio for reducing NOx emission with two types of nozzle. The test demonstrated that NOx emission can be reduced by >70% in accordance with operating conditions.

  • PDF

Nanoscale Nonlinear Dynamics of Carbon Nanotube Probe Tips (탄소나노튜브 탐침의 나노 비선형 동역학)

  • 이수일
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.83-86
    • /
    • 2004
  • Carbon nanotube (CNT) tips in tapping mode atomic force microscopy (AFM) enable very high-resolution imaging, measurements, and manipulation at the nanoscale. We present recent results based on experimental analysis that yield new insights into the dynamics of CNT probe tips in tapping mode AFM. Experimental measurements are presented of the frequency response and dynamic amplitude-distance data of a high-aspect-ratio multi-walled (MW) CNT tip to demonstrate the non-linear features including tip amplitude saturation preceding the dynamic buckling of the MWCNT. Surface scanning is performed using a MWCNT tip on a SiO$_2$ grating to verify the imaging instabilities associated with MWCNT buckling when used with normal control schemes in the tapping mode. Lastly, the choice of optimal setpoints for tapping mode control using CNT probe tip are discussed using the experimental results.

  • PDF

Performance analysis of Back-to-Back converter composed of multi-pulse converter and PWM converter (다중펄스 컨버터와 PWM 컨버터로 구성된 Back-to-Back 컨버터의 계통연계 성능 분석)

  • Shim, Myong-Bo;Jeong, Jong-Kyou;Kim, Jong-Won;Han, Byung-Moon
    • Proceedings of the KIPE Conference
    • /
    • 2010.07a
    • /
    • pp.387-388
    • /
    • 2010
  • 본 논문은 수십 MW용량의 풍력단지를 교류전력망에 연계하기 위한 다중펄스 컨버터와 PWM 컨버터로 구성된 Back-to-Back 컨버터를 제안하였다. 시뮬레이션 모델개발과 하드웨어 축소모형 실험을 통해 제안하는 Back-to-Back 컨버터의 시스템 구성 및 동작특성에 대해서 분석하고 3-레벨 24-펄스 컨버터를 영전압과 점호각을 제어할 경우와 점호각만을 제어할 경우 제어상의 장 단점과 제어성능을 비교분석하였다.

  • PDF

A Study on Medium Voltage Power Supply with Enhanced Ignition Characteristics for Plasma Torch

  • Jung, Kyung-Sub;Suh, Yong-Sug
    • Proceedings of the KIPE Conference
    • /
    • 2010.07a
    • /
    • pp.242-243
    • /
    • 2010
  • This paper investigates a power supply of medium voltage with enhanced ignition characteristics for plasma torch. Series resonant half-bridge topology is presented to be a suitable ignition circuitry. The ignition circuitry is integrated into the main power conversion system of a multi-phase staggered three-level dc-dc converter with a diode front-end rectifier. The plasma torch rated for 3MW, 2kA and having the physical size of 1m long is selected to be a high enthalpy source in waste disposal system. The steady-state and transient operations of plasma torch are simulated. The parameters of Cassie-Mary arc model are calculated based on 3D magneto-hydrodynamic simulations. Circuit simulation waveform shows that the ripple of arc current can be maintained within ${\pm}10%$ of its rated value under the existence of load disturbance. This power conversion configuration provides high enough ignition voltage around 5KA during ignition phase and high arc stability under the existence of arc disturbance noise resulting in a high-performance plasma torch system.

  • PDF

A Study on the Characteristics of WindHydro - a Floating Wind Turbine Simulation Code (부유식 풍력발전 해석 프로그램 WindHydro 특성 연구)

  • Song, Jinseop;Rim, Chae Whan;Lee, Sungkyun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.37.1-37.1
    • /
    • 2011
  • A floating wind turbine dynamic simulation program, 'WindHydro', is newly developed. In order to investigate the characteristics of the program, a series of loading cases are simulated such as (1) wind only case, (2) free decay cases with initial displacement, (3) wave only case (4) wind and wave case. The simulations are carried out for the 5-MW OC3-Hywind model which has a spar buoy and catenary mooring lines. As a result, the reliability of WindHydro is verified in most viewpoints although additional study is still necessary to clear out some uncertainty of the program.

  • PDF

Development of 10MW grade Intelligent Digital Governor and It's Application on Sumjingang Hydro-Power Plant (10MW급 인텔리전트 디지털 가버너 국산화 개발 및 섬진강 수력 발전소 적용에 관한 연구)

  • Jeon, Il-Young;Cho, Sung-Hun;Kim, Yoon-Sik;Chun, Si-Young;Shin, Nam-Sik;Park, Young-Chul
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2153-2155
    • /
    • 2001
  • This thesis presents a development of intelligent digital governing system and it's application on Sumjingang Hydro-Power plant. The developed system consists of hardware, software and governing algorithm. The feature of hardware is triplex-modular fail safe redundant system for a safe turbine running. The software consists of operating system and application program. The operating system has real-time and multi-tasking features. And also, application algorithm is composed to run francis type hydro-turbine. The developed digital governing system is applied to Sumjingang hydro-power plant, Korea Hydro Nuclear Power Corporation.

  • PDF

Ride-through of PMSG Wind Power System Under the Distorted and Unbalanced Grid Voltage Dips

  • Sim, Jun-Bo;Kim, Ki-Cheol;Son, Rak-Won;Oh, Joong-Ki
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.6
    • /
    • pp.898-904
    • /
    • 2012
  • This paper presents a ride-through skill of PMSG wind turbine system under the distorted and unbalanced grid voltage dips. When voltage dips occur in the grid, pitch control and generator speed control as well as a parallel resistor of DC-link help to keep the turbine's safety. Modern grid code requires a wind turbine to supply reactive currents to help voltage recovery after grid faults clearance. In order to supply reactive currents to the grid in case of the distortedly unbalanced grid voltage dips, a special PLL is needed to control the grid side converter and to regulate the grid voltages symmetrically. The proposed method is applied to 2MW multi-pole PMSG wind turbine system, and verified by simulation.

Special cases in fatigue analysis of wind turbines

  • Gunes, Onur;Altunsu, Elif;Sari, Ali
    • Wind and Structures
    • /
    • v.32 no.5
    • /
    • pp.501-508
    • /
    • 2021
  • The turbine industry demands a reliable design with affordable cost. As technological advances begin to support turbines of huge sizes, and the increasing importance of wind turbines from day to day make design safety conditions more important. Wind turbines are exposed to environmental conditions that can affect their installation, durability, and operation. International Electrotechnical Commission (IEC) 61400-1 design load cases consist of analyses involving wind turbine operating conditions. This design load cases (DLC) is important for determining fatigue loads (i.e., forces and moments) that occur as a result of expected conditions throughout the life of the machine. With the help of FAST (Fatigue, Aerodynamics, Structures, and Turbulence), an open source software, the NREL 5MW land base wind turbine model was used. IEC 61400-1 wind turbine design standard procedures assessed turbine behavior and fatigue damage to the tower base of dynamic loads in different design conditions. Real characteristic wind speed distribution and multi-directional effect specific to the site were taken into consideration. The effect of these conditions on the economic service life of the turbine has been studied.