The cables in a cable-stayed bridge are critical load-carrying parts. The potential damage to cables should be identified early to prevent disasters. In this study, an efficient deep learning model is proposed for the damage identification of cables using both a multi-layer perceptron (MLP) and a graph neural network (GNN). Datasets are first generated using the practical advanced analysis program (PAAP), which is a robust program for modeling and analyzing bridge structures with low computational costs. The model based on the MLP and GNN can capture complex nonlinear correlations between the vibration characteristics in the input data and the cable system damage in the output data. Multiple hidden layers with an activation function are used in the MLP to expand the original input vector of the limited measurement data to obtain a complete output data vector that preserves sufficient information for constructing the graph in the GNN. Using the gated recurrent unit and set2set model, the GNN maps the formed graph feature to the output cable damage through several updating times and provides the damage results to both the classification and regression outputs. The model is fine-tuned with the original input data using Adam optimization for the final objective function. A case study of an actual cable-stayed bridge was considered to evaluate the model performance. The results demonstrate that the proposed model provides high accuracy (over 90%) in classification and satisfactory correlation coefficients (over 0.98) in regression and is a robust approach to obtain effective identification results with a limited quantity of input data.
2020년 1월 1일부터 국제해사기구(IMO)는 전 세계 모든 해역을 지나가는 선박을 대상으로 선박연료유의 황 함유량 상한선을 3.5 %에서 0.5 %로 낮춰 선박으로 인해 발생하는 대기오염을 줄이기 위한 강력한 규제를 실시한다. 황 함유량이 낮은 연료유를 사용하여 대기오염 물질을 줄이는 것도 중요하지만 선박을 경제적으로 운영하여 불필요한 에너지 낭비를 줄이는 것 또한 대기오염 물질을 줄이는데 큰 도움이 된다. 따라서 선박은 잡음의 영향을 받더라도 항로를 정확하게 유지하여야 한다. 항로를 정확하게 추종하기 위해 오토파일럿 시스템이 사용되지만 오토파일럿 시스템의 성능이 아무리 우수하다 하더라도 잡음의 영향을 받게 된다면 성능에 한계를 가진다. 실제 환경에서는 자이로스코프에서 측정잡음이 더해진 회두각이 오토파일럿 시스템의 입력으로 들어가 오토파일럿 시스템의 성능을 저하시킨다. 이와 같은 문제를 해결하기 위해 상태추정에 쓰이는 Kalman Filter를 적용하여 잡음의 영향을 줄여주는 기법이 있지만 이 또한 역시 잡음의 영향을 완전히 제거시키는 것이 불가능하다. 따라서 본 논문에서는 잡음제거 성능을 더욱 더 개선시키기 위해 전진방향 구간에서는 인공지능 기술 중 하나인 다층퍼셉트론(Multi-Layer Perceptron; MLP)를 적용하고, 회전구간에서는 Kalman Filter를 적용하여 Kalman Filter만을 사용한 경우보다 우수한 잡음제거 기법을 제안한다. 시뮬레이션을 통해 제안한 방법이 Kalman Filter만을 사용한 경우보다 조타기의 오동작을 방지하여 선박의 전진방향 운동이 개선됨을 확인할 수 있다.
장기간의 가뭄에 의한 피해를 최소화하기 위해서는 유역에 적합한 가뭄관리 대책의 수립과 함께 미래에 발생하게 될 가뭄을 미리 예측할 수 있는 기술이 구축되어야 한다. 또한 미래의 가뭄에 대한 합리적 대응 방안을 수립하기 위해서는 가뭄의 지속기간(duration)과 심도(severity)의 정량적인 예측이 선행되어야 한다. 본 연구에서는 수문 시계열의 예측에 가장 많이 이용되고 있는 대표적인 통계학적 기법인 인공신경망 모형(Artificial Neural Network Model)과 가뭄지수를 이용하여 남한지역의 서울, 대전, 대구, 광주 등의 4개 기상관측소를 선정하여 가뭄예측을시도하였다. 가뭄 예측을 위하여 남한지역 내 선정한 기상관측소의 관측된 과거 강수량 자료를 이용하여 산정된 SPI (Standardized Precipitation Index)를 입력변수로 하여 다층 퍼셉트론(Multi Layer Perceptron) 인공신경망 모델에 적용하였으며, 매개변수 보정을 위한 학습기간으로 1976~2000년과 2001~2010년을 예측을 위한 검증기간으로 선정하여, 학습 및 예측을 시도하였다. 학습된 최적의 예측모형을 이용하여 서로 다른 선행예보시간(1~6개월)을 갖고 SPI (3), SPI (6), SPI (12)별로 가뭄을 예측하였으며, 가뭄예측 결과, SPI (3)의 경우에는 1개월 선행예보에서만 좋은 결과를 나타내었으며, SPI (6)의 경우 1~3개월 후의 가뭄을 예측하는 경우에 비교적 관측자료와 잘 일치하는 결과를 나타내었다. SPI (12)의 경우에는 약5개월 후까지의 가뭄예측에 양호한 결과를 나타내었다.
물을 공급하기 위한 자원 중 하나인 지하수는 다양한 자연적 요인에 의해 수위의 변동이 발생한다. 최근, 인공신경망을 이용하여 지하수위의 변동을 예측하는 연구가 진행되었다. 기존에는 인공신경망 연산자 중 학습에 영향을 미치는 Optimizer로 경사하강법(Gradient Descent, GD) 기반 Optimizer를 사용하였다. GD 기반 Optimizer는 초기 상관관계 의존성과 해의 비교 및 저장 구조 부재의 단점이 존재한다. 본 연구는 GD 기반 Optimizer의 단점을 개선하기 위해 GD와 화음탐색법(Harmony Search, HS)를 결합한 새로운 Optimizer인 Gradient Descent combined with Harmony Search(GDHS)를 개발하였다. GDHS의 성능을 평가하기 위해 다층퍼셉트론(Multi Layer Perceptron, MLP)을 이용하여 이천율현 관측소의 지하수위를 학습 및 예측하였다. GD 및 GDHS를 사용한 MLP의 성능을 비교하기 위해 Mean Squared Error(MSE) 및 Mean Absolute Error(MAE)를 사용하였다. 학습결과를 비교하면, GDHS는 GD보다 MSE의 최대값, 최소값, 평균값 및 표준편차가 작았다. 예측결과를 비교하면, GDHS는 GD보다 모든 평가지표에서 오차가 작은 것으로 평가되었다.
For a design of multi-layer armor, the extensive full scale or sub-scale penetration test data are required. In generally, the collection of penetration data is in need of time-consuming and expensive processes. However, the application of numerical or analytical method is very limited due to poor understanding about penetration mechanics. In this paper, we have developed a neural network analyzer which can be used as a design tool for a new armor. Calculation results show that the developed neural network analyzer can predict relatively exact penetration depth of a new armor through the effective analysis of the pre-existing penetration database.
In this study we develop a set of solar proton event (SPE) forecast models with NOAA scales by Multi Layer Perceptron (MLP), one of neural network methods, using GOES solar X-ray flare data from 1976 to 2011. Our MLP models are the first attempt to forecast the SPE scales by the neural network method. The combinations of X-ray flare class, impulsive time, and location are used for input data. For this study we make a number of trials by changing the number of layers and nodes as well as combinations of the input data. To find the best model, we use the summation of F-scores weighted by SPE scales, where F-score is the harmonic mean of PODy (recall) and precision (positive predictive value), in order to minimize both misses and false alarms. We find that the MLP models are much better than the multiple linear regression model and one layer MLP model gives the best result.
Ultrasonic metal welding has been widely used for joining lithium-ion battery tabs. Weld quality monitoring has been an important issue in lithium-ion battery manufacturing. This study focuses on the weld quality monitoring in ultrasonic metal welding with the longitudinal-torsional vibration mode horn developed newly. As the quality of ultrasonic welding depends on welding parameters like pressure, time, and amplitude, the suitable values of these parameters were selected for experimentation. The welds were tested via tensile testing machine and weld strengths were investigated. The dataset collected for performance test was used to train the multi-layer perceptron neural network. The three layer neural network was used for the study and the optimum number of neurons in the first and second hidden layers were selected based on performances of each models. The best models were selected for the horn and then tested to see their performances on an unseen dataset. The neural network models for the longitudinal-torsional mode horn attained test accuracy of 90%. This result implies that proposed models has potential for the weld quality monitoring.
표지 유전자는 특정한 실험 조건의 특성을 나타내주는 발현수준의 유전자를 의미한다. 이 유전자들은 여러 집단간의 발현수준에서 유의한 차이를 보여주며, 실제로 집단 간의 차이를 유발하는 유전자일 확률이 높아 특정 생물학적 현상과 관련 있는 표지 유전자를 찾는 연구에 이용될 수 있다. 본 논문에서는, 먼저 그 동안 제안된 여러 표준화 방법들 중에서 가장 널리 사용되고 있는 방법들을 이용하여 데이터를 표준화 한 후 통계에 따라 유전자의 우선순위를 정함으로써 표지유전자를 추출할 수 있는 시스템을 제안하였다. 다층퍼셉트론 신경망 분류기를 이용하여 각 표준화 방법들의 성능을 비교분석하였다. 그 결과 Lowess 표준화 후 ANOVA를 이용하여 선택된 8개의 표지 유전자를 포함하는 마이크로어레이 데이터 셋에 MLP 알고리즘을 적용한 결과 99.32%의 가장 높은 분류 정확도와 가장 낮은 예측 에러 추정치를 나타내었다.
본 논문은 퍼스널 모빌리티(Personal Mobility, PM)를 이용하는 청각 장애인에게 소리가 발생하는 도래각(Direction of Arrival, DOA)을 시각화하는 지능형 제어 시스템을 제시하며 도로에서 발생하는 경보음, 크락션 등 소리로 인한 위험한 상황들을 인지하고 예방하고자 한다. 소리 위치 추정 방법은 GCC-PHAT(Generalized Cross-Correlation Phase Transform) 기반 도착 지연 시간(Time Difference of Arrival, TDOA)을 특징으로 갖는 머신러닝 분류 모델을 사용한다. 도로 상황을 재현한 실험 환경에서 각각 풍속 0, 5.8, 14.2, 26.4km/h의 조건에 따라 학습 데이터를 추출한 후 학습한 4가지 분류 모델들을 Grid search cross validation으로 비교하며 성능이 가장 우수한 MLP(Multi-Layer Perceptron) 모델을 알고리즘으로 적용하였다. 최종적으로 바람이 발생하였을 때 제안된 알고리즘이 평균 90.7%의 정확도를 나타내었으며, 이는 기존의 일반적인 소리 위치 추정기법보다 평균 7.6-11.5% 정도의 성능 향상을 보이는 것이다.
정보력 있는 유전자는 특정한 실험 조건의 특성을 나타내주는 발현수준의 유전자를 의미한다. 이 유전자들은 여러 집단 간의 발현수준에서 유의한 차이를 보여주며, 실제로 집단 간의 차이를 유발하는 유전자일 확률이 높아 특정 생물학적 현상과 관련 있는 정보적 유전자를 찾는 연구에 이용될 수 있다. 본 논문에서는 먼저 그 동안 제안된 여러 표준화 방법들 중에서 가장 널리 사용되고 있는 방법들을 이용하여 데이터를 표준화 한 후 제안한 유사성 척도 조합 방법으로 정보력 있는 유전자들을 추출할 수 있는 시스템을 고안하였다. 다층퍼셉트론 신경망 분류기를 이용하여 각 표준화 방법들의 성능을 비교분석하였다. 그 결과 Lowess 표준화 후 피어슨 적률 상관 계수와 유클리디안 거리 계수 조합을 이용하여 선택된 200 유전자들을 멀티퍼셉트론 신경망 분류기로 분류한 결과 93.84%의 향상된 분류 성능을 보였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.