• 제목/요약/키워드: Multi-Layer-Perceptron

검색결과 443건 처리시간 0.023초

고유 숫자를 이용한 번호판 숫자 인식 (Recognition of Numeric Characters in License Plates using Eigennumber)

  • 박경수;강현철;이완주
    • 대한전자공학회논문지SP
    • /
    • 제44권3호
    • /
    • pp.1-7
    • /
    • 2007
  • 자동차 번호판을 인식하기 위해서는 차량 영상에서 번호판을 추출하고, 추출된 번호판으로부터 문자를 분리하여야 하고, 각 문자들에 대해서 특징 벡터를 추출하고 신경망을 이용하여 인식한다. 이때 인식의 기준이 되는 특징 벡터의 선정은 데이터양의 감소뿐 만 아니라 인식 성능에 많은 영향을 미친다. 본 논문에서는 숫자를 고유 숫자(eigennumber)의 선형 조합으로 분해하여 특징 벡터를 추출하는 새로운 특징 벡터 추출 기법을 제안하고, 자동차 번호판의 숫자 인식에 적용함으로써 그 유효성을 검증하였다. 실험 결과, 고유 숫자 공간상에서 다층 퍼셉트론 신경망을 이용하여 95.3%의 인식률을 보였고, 이는 일반적인 메쉬 특징과 비교하여 약 5%의 향상된 결과이다.

유방 초음파 영상에서 질감 특성을 이용한 악성종양 분석 (Analysis of Malignant Tumor Using Texture Characteristics in Breast Ultrasonography)

  • 조진영;예수영
    • 융합신호처리학회논문지
    • /
    • 제20권2호
    • /
    • pp.70-77
    • /
    • 2019
  • 조기 유방암을 진단하기 위해서는 유방초음파 판독이 매우 중요하다. 초음파 검사는 초음파장비에 따라 화질의 차이가 심하게 나타날 뿐만 아니라 검사자의 경험과 숙련 정도에 따라 진단의 차이가 크게 나타난다. 따라서 정확한 진단과 치료를 위하여 객관적인 판단기준이 필요하다. 이에 본 연구에서는 GLCM(Gray Level Co-occurrence Matrix) 알고리듬을 적용하여 질감 특성을 분석하고 특징파라미터들을 추출하여 신경망분류기를 이용하여 유방암을 진단하였다. 유방초음파 영상은 정상 조직과 양성, 악성 종양으로 분류하여 질감 특성 파라미터 6가지를 추출하였다. 유방초음파검사로 진단된 정상 영상, 악성 및 양성종양 영상 각각 14증례를 대상으로 추출된 6개의 파라미터들을 적용하여 다층 퍼셉트론 신경망구조 역전파 학습방법으로 학습을 시켰다. 학습된 모델에 정상 유방 영상 51증례, 양성종양 영상 62증례, 악성종양 영상 74증례의 영상을 사용하여 분류한 결과 95.2%의 분류율을 나타내었다.

위너필터법이 적용된 MFCC의 파라미터 추출에 기초한 화자독립 인식알고리즘 (Speaker Independent Recognition Algorithm based on Parameter Extraction by MFCC applied Wiener Filter Method)

  • 최재승
    • 한국정보통신학회논문지
    • /
    • 제21권6호
    • /
    • pp.1149-1154
    • /
    • 2017
  • 배경잡음 하에서 음성인식 시스템의 우수한 인식성능을 얻기 위해서 적절한 음성의 특징 파라미터를 선택하는 것이 매우 중요하다. 본 논문에서 사용한 특징 파라미터는 위너필터 방법이 적용된 인간의 청각 특성을 이용한 멜 주파수 켑스트럼 계수(Mel frequency cepstral coefficient, MFCC)를 사용한다. 즉, 본 논문에서 제안하는 특징 파라미터는 배경잡음을 제거한 후에 깨끗한 음성신호의 파라미터를 추출하는 새로운 방법이다. 제안한 수정된 MFCC 특징 파라미터를 다층 퍼셉트론 네트워크에 입력하여 학습시킴으로써 화자인식을 구현한다. 본 실험에서는 14차의 MFCC 특징 파라미터를 사용하여 화자독립 인식실험을 실시하였으며, 백색잡음이 혼합된 경우의 음성의 화자독립인식률은 평균 94.48%로 효과적인 결과를 구할 수 있었다. 본 논문에서 제안한 방법과 기존의 방법들을 비교하였을 때 본 논문에서 제안한 화자인식 성능이 수정된 MFCC 특징 파라미터를 사용함으로써 향상되었다.

개량된 음성매개변수를 사용한 지속시간이 짧은 잡음음성 중의 배경잡음 분류 (Background Noise Classification in Noisy Speech of Short Time Duration Using Improved Speech Parameter)

  • 최재승
    • 한국정보통신학회논문지
    • /
    • 제20권9호
    • /
    • pp.1673-1678
    • /
    • 2016
  • 음성인식처리 분야에서 배경잡음으로 인하여 음성입력이 배경잡음으로 잘못 판단되는 원인이 되어 음성인식율의 저하를 초래한다. 이러한 종류의 잡음대책은 단순하지 않으므로 보다 고도한 잡음처리기술이 필요하게 된다. 따라서 본 논문에서는 잡음환경 중에서 정상적인 배경잡음 혹은 비정상적인 배경잡음과 지속 시간이 짧은 음성을 구별하는 알고리즘에 대하여 기술한다. 본 알고리즘은 다른 종류의 잡음과 음성을 구별하는 중요한 수단으로서 개량된 음성의 특징파리미터를 사용한다. 다음으로 다층퍼셉트론 네트워크에 의하여 잡음의 종류를 추정하는 알고리즘에 대해서 기술한다. 본 실험에서는 잡음과 음성이 구별이 가능하도록 실험적으로 확인하였다.

정수장 운영효율 향상을 위한 ELM 기반 단기 물 수요 예측 (ELM based short-term Water Demand Prediction for Effective Operation of Water Treatment Plant)

  • 최기선;이동훈;김성환;이경우;전명근
    • 조명전기설비학회논문지
    • /
    • 제23권9호
    • /
    • pp.108-116
    • /
    • 2009
  • 본 논문에서는 단기 물 수요 예측에 대한 모델구현을 위해 MLP의 과도학습 문제를 해결할 수 있고 빠른 학습이 가능한 ELM 기반 단기 물 수요 예측 알고리즘을 제안한다. 제시된 알고리즘의 검증을 위해 2007년도와 2008년도 충남지역 광역상수도인 A정수장에서 취득된 데이터를 분석하여 알고리즘 구현의 정확도 분석에 사용하였다. 실험 결과 MLP모델은 MAPE가 5.82[%]인 반면, 제안된 방법인 ELM기반 모델은 5.61[%]로 성능이 향상된 것으로 나타났다. 또한, MLP모델은 학습에 소요된 시간이 7.57초인 반면, ELM 기반 모델은 0.09초로 빠른 학습이 가능함을 알 수 있었다. 따라서 제안된 ELM 기반 알고리즘은 정수장의 효율적 운영을 위한 단기 물 수요 예측에 활용할 수 있음을 보였다.

항만물동량 예측력 제고를 위한 ARIMA 및 인공신경망모형들의 비교 연구 (A Study on Application of ARIMA and Neural Networks for Time Series Forecasting of Port Traffic)

  • 신창훈;정수현
    • 한국항해항만학회지
    • /
    • 제35권1호
    • /
    • pp.83-91
    • /
    • 2011
  • 예측의 정확성은 비용의 감소나 고객서비스의 제고를 위해 필수적으로 선행되어야 하기에 현재까지도 많은 연구자들에 의해 연구되고 있는 분야이다. 본 연구에서는 국내 항만의 컨테이너 물동량 예측에 있어 대표적인 비선형예측모형인 인공신경망모형과 ARIMA모형에 대한 비교연구를 수행하는데 목적을 두었고, 컨테이너 물동량 예측력 제고를 위해 ARIMA모형과 인공신경망(ANN)모형을 결합한 하이브리드모형을 사용해 다른 모형들과 예측성과를 비교하고자 한다. 특히 인공신경망모형의 네트워크 구조 설계에 부분에 있어 방대하며 복잡한 탐색공간에서도 전역해 찾기에 효과적인 기법으로 알려져 있는 유전알고리즘을 사용함과 동시에 인공신경망의 대표적인 모형으로 알려진 다층 퍼셉트론(MLP)뿐만 아니라 시간지연네트워크(TDNN)를 사용해 예측성과를 비교하였다. 그 결과 ANN모형과 하이브리드모형이 ARIMA모형보다 더 뛰어난 예측성과를 보이는 것으로 나왔다.

Recurrent Neural Networks를 활용한 Baltic Dry Index (BDI) 예측 (Time-Series Prediction of Baltic Dry Index (BDI) Using an Application of Recurrent Neural Networks)

  • 한민수;유성진
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2017년도 추계학술대회
    • /
    • pp.50-53
    • /
    • 2017
  • 장기 해운불황에 따라 불확실성이 증폭되고 있는 상황에서 경기추세의 이해뿐만 아니라 예측 또한 중요해지고 있는 실정이다. 본 논문에서는 최근 특정 복잡한 문제에 대해서 각광받고 있는 인공신경망을 적용하여 BDI 예측을 연구하였다. 사용된 인공신경망은 순환신경망으로 RNN과 LSTM 그리고 비교의 목적으로 MLP를 통해 2009.04.01.부터 2017.07.31.의 기간을 대상으로 연구를 진행하였다. 또한 전통적 시계열 예측방법론인 ARIMA 분석을 실시해 인공신경망들의 예측성능과 비교하였다. 결과로 순환신경망인 RNN의 성능이 가장 뛰어났으며 LSTM의 특정 시계열(BDI)에의 적용가능성을 확인할 수 있었다.

  • PDF

하이브리드 통계적 특징 모델과 신경망을 이용한 자동차 번호판 인식 (Recognition of License Plates Using a Hybrid Statistical Feature Model and Neural Networks)

  • 유신;정병준;강현철
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제36권12호
    • /
    • pp.1016-1023
    • /
    • 2009
  • 자동차 번호판 인식 시스템은 문자 추출, 특징 추출 등의 영상처리와 추출된 문자를 인식하는 인식기로 구성된다. 특징 추출은 문자 영역의 데이터 감소뿐만 아니라 인식 성능을 결정한다. 따라서 본 논문에서는 번호판 인식의 결과에 영향이 큰 숫자 인식, 특히 숫자의 특징 추출에 초점을 두었으며, 데이터의 군집성을 재배치하여 데이터 간의 최적의 산란도를 확보할 수 있는 통계적 특징의 혼합 모델을 제안하고, 이를 다층 퍼셉트론과 LVQ 신경망을 이용하여 유효성을 검증하였다. 제안된 통계적 특징 추출 방법은 번호판 영상이 갖는 정보를 가장 잘 유지하고, 잡음과 외부 환경에 강건하며 효과적인 방법임을 보여준다.

The Study on Implementation of Crime Terms Classification System for Crime Issues Response

  • Jeong, Inkyu;Yoon, Cheolhee;Kang, Jang Mook
    • International Journal of Advanced Culture Technology
    • /
    • 제8권3호
    • /
    • pp.61-72
    • /
    • 2020
  • The fear of crime, discussed in the early 1960s in the United States, is a psychological response, such as anxiety or concern about crime, the potential victim of a crime. These anxiety factors lead to the burden of the individual in securing the psychological stability and indirect costs of the crime against the society. Fear of crime is not a good thing, and it is a part that needs to be adjusted so that it cannot be exaggerated and distorted by the policy together with the crime coping and resolution. This is because fear of crime has as much harm as damage caused by criminal act. Eric Pawson has argued that the popular impression of violent crime is not formed because of media reports, but by official statistics. Therefore, the police should watch and analyze news related to fear of crime to reduce the social cost of fear of crime and prepare a preemptive response policy before the people have 'fear of crime'. In this paper, we propose a deep - based news classification system that helps police cope with crimes related to crimes reported in the media efficiently and quickly and precisely. The goal is to establish a system that can quickly identify changes in security issues that are rapidly increasing by categorizing news related to crime among news articles. To construct the system, crime data was learned so that news could be classified according to the type of crime. Deep learning was applied by using Google tensor flow. In the future, it is necessary to continue research on the importance of keyword according to early detection of issues that are rapidly increasing by crime type and the power of the press, and it is also necessary to constantly supplement crime related corpus.

기계 학습을 활용한 이미지 결함 검출 모델 개발 (Development of Image Defect Detection Model Using Machine Learning)

  • 이남영;조혁현;정희택
    • 한국전자통신학회논문지
    • /
    • 제15권3호
    • /
    • pp.513-520
    • /
    • 2020
  • 최근 기계 학습을 활용한 비전 검사 시스템의 개발이 활발해지고 있다. 본 연구는 기계 학습을 활용한 결함 검사 모델을 개발하고자 한다. 이미지에 대한 결함 검출 문제는 기계 학습에 있어 지도 학습 방법인 분류 문제에 해당한다. 본 연구에서는 특징을 자동 추출하는 알고리즘과 특징을 추출하지 않는 알고리즘을 기반으로 결함 검출 모델을 개발한다. 특징을 자동 추출하는 알고리즘으로 1차원 합성곱 신경망과 2차원 합성곱 신경망을 활용하였으며, 특징을 추출하지 않는 알고리즘으로 다중 퍼셉트론, 서포트 벡터 머신을 활용하였다. 4가지 모델을 기반으로 결함 검출 모델을 개발하였고 이들의 정확도와 AUC를 기반으로 성능 비교하였다. 이미지 분류는 합성곱 신경망을 활용한 모델 개발이 일반적임에도, 본 연구에서 이미지의 화소를 RGB 값으로 변환하여 서포트 벡터 머신 모델을 개발할 때 높은 정확도와 AUC를 얻을 수 있었다.