• Title/Summary/Keyword: Multi-Layer-Perceptron

Search Result 443, Processing Time 0.03 seconds

Structural failure classification for reinforced concrete buildings using trained neural network based multi-objective genetic algorithm

  • Chatterjee, Sankhadeep;Sarkar, Sarbartha;Hore, Sirshendu;Dey, Nilanjan;Ashour, Amira S.;Shi, Fuqian;Le, Dac-Nhuong
    • Structural Engineering and Mechanics
    • /
    • v.63 no.4
    • /
    • pp.429-438
    • /
    • 2017
  • Structural design has an imperative role in deciding the failure possibility of a Reinforced Concrete (RC) structure. Recent research works achieved the goal of predicting the structural failure of the RC structure with the assistance of machine learning techniques. Previously, the Artificial Neural Network (ANN) has been trained supported by Particle Swarm Optimization (PSO) to classify RC structures with reasonable accuracy. Though, keeping in mind the sensitivity in predicting the structural failure, more accurate models are still absent in the context of Machine Learning. Since the efficiency of multi-objective optimization over single objective optimization techniques is well established. Thus, the motivation of the current work is to employ a Multi-objective Genetic Algorithm (MOGA) to train the Neural Network (NN) based model. In the present work, the NN has been trained with MOGA to minimize the Root Mean Squared Error (RMSE) and Maximum Error (ME) toward optimizing the weight vector of the NN. The model has been tested by using a dataset consisting of 150 RC structure buildings. The proposed NN-MOGA based model has been compared with Multi-layer perceptron-feed-forward network (MLP-FFN) and NN-PSO based models in terms of several performance metrics. Experimental results suggested that the NN-MOGA has outperformed other existing well known classifiers with a reasonable improvement over them. Meanwhile, the proposed NN-MOGA achieved the superior accuracy of 93.33% and F-measure of 94.44%, which is superior to the other classifiers in the present study.

A new Design of Granular-oriented Self-organizing Polynomial Neural Networks (입자화 중심 자기구성 다항식 신경 회로망의 새로운 설계)

  • Oh, Sung-Kwun;Park, Ho-Sung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.2
    • /
    • pp.312-320
    • /
    • 2012
  • In this study, we introduce a new design methodology of a granular-oriented self-organizing polynomial neural networks (GoSOPNNs) that is based on multi-layer perceptron with Context-based Polynomial Neurons (CPNs) or Polynomial Neurons (PNs). In contrast to the typical architectures encountered in polynomial neural networks (PNN), our main objective is to develop a methodological design strategy of GoSOPNNs as follows : (a) The 1st layer of the proposed network consists of Context-based Polynomial Neuron (CPN). In here, CPN is fully reflective of the structure encountered in numeric data which are granulated with the aid of Context-based Fuzzy C-Means (C-FCM) clustering method. The context-based clustering supporting the design of information granules is completed in the space of the input data while the build of the clusters is guided by a collection of some predefined fuzzy sets (so-called contexts) defined in the output space. (b) The proposed design procedure being applied at each layer of GoSOPNN leads to the selection of preferred nodes of the network (CPNs or PNs) whose local characteristics (such as the number of contexts, the number of clusters, a collection of the specific subset of input variables, and the order of the polynomial) can be easily adjusted. These options contribute to the flexibility as well as simplicity and compactness of the resulting architecture of the network. For the evaluation of performance of the proposed GoSOPNN network, we describe a detailed characteristic of the proposed model using a well-known learning machine data(Automobile Miles Per Gallon Data, Boston Housing Data, Medical Image System Data).

Solar Energy Prediction Based on Artificial neural network Using Weather Data (태양광 에너지 예측을 위한 기상 데이터 기반의 인공 신경망 모델 구현)

  • Jung, Wonseok;Jeong, Young-Hwa;Park, Moon-Ghu;Seo, Jeongwook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.05a
    • /
    • pp.457-459
    • /
    • 2018
  • Solar power generation system is a energy generation technology that produces electricity from solar power, and it is growing fastest among renewable energy technologies. It is of utmost importance that the solar power system supply energy to the load stably. However, due to unstable energy production due to weather and weather conditions, accurate prediction of energy production is needed. In this paper, an Artificial Neural Network(ANN) that predicts solar energy using 15 kinds of meteorological data such as precipitation, long and short wave radiation averages and temperature is implemented and its performance is evaluated. The ANN is constructed by adjusting hidden parameters and parameters such as penalty for preventing overfitting. In order to verify the accuracy and validity of the prediction model, we use Mean Absolute Percentage Error (MAPE) and Mean Absolute Error (MAE) as performance indices. The experimental results show that MAPE = 19.54 and MAE = 2155345.10776 when Hidden Layer $Sizes=^{\prime}16{\times}10^{\prime}$.

  • PDF

Bond strength prediction of steel bars in low strength concrete by using ANN

  • Ahmad, Sohaib;Pilakoutas, Kypros;Rafi, Muhammad M.;Zaman, Qaiser U.
    • Computers and Concrete
    • /
    • v.22 no.2
    • /
    • pp.249-259
    • /
    • 2018
  • This paper presents Artificial Neural Network (ANN) models for evaluating bond strength of deformed, plain and cold formed bars in low strength concrete. The ANN models were implemented using the experimental database developed by conducting experiments in three different universities on total of 138 pullout and 108 splitting specimens under monotonic loading. The key parameters examined in the experiments are low strength concrete, bar development length, concrete cover, rebar type (deformed, cold-formed, plain) and diameter. These deficient parameters are typically found in non-engineered reinforced concrete structures of developing countries. To develop ANN bond model for each bar type, four inputs (the low strength concrete, development length, concrete cover and bar diameter) are used for training the neurons in the network. Multi-Layer-Perceptron was trained according to a back-propagation algorithm. The ANN bond model for deformed bar consists of a single hidden layer and the 9 neurons. For Tor bar and plain bars the ANN models consist of 5 and 6 neurons and a single hidden layer, respectively. The developed ANN models are capable of predicting bond strength for both pull and splitting bond failure modes. The developed ANN models have higher coefficient of determination in training, validation and testing with good prediction and generalization capacity. The comparison of experimental bond strength values with the outcomes of ANN models showed good agreement. Moreover, the ANN model predictions by varying different parameters are also presented for all bar types.

Development of an Angle Estimation System Using a Soft Textile Bending Angle Sensor (소프트 텍스타일 굽힘 각 센서를 이용한 각도 추정 시스템 개발 )

  • Seung-Ah Yang;Sang-Un Kim;Joo-Yong Kim
    • Science of Emotion and Sensibility
    • /
    • v.27 no.1
    • /
    • pp.59-68
    • /
    • 2024
  • This study aimed to develop a soft fabric-based elbow-bending angle sensor that can replace conventional hard-type inertial sensors and a system for estimating bending angles using it. To enhance comfort during exercise, this study treated four fabrics (Bergamo, E-band, span cushion, and polyester) by single-walled carbon nanotube dip coating to create conductive textiles. Subsequently, one fabric was selected based on performance evaluations, and an elbow flexion angle sensor was fabricated. Gauge factor, hysteresis, and sensing range were employed as performance evaluation metrics. The data obtained using the fabricated sensor showed different trends in sensor values for the changes in the angle during bending and extending movements. Because of this divergence, the two movements were separated, and this constituted the one-step process. In the two-step process, multilayer perceptron (MLP) was employed to handle the complex nonlinear relationships and achieve high data accuracy. Based on the results of this study, we anticipate effective utilization in various smart wearable and healthcare domains. Consequently, a soft- fabric bending angle sensor was developed, and using MLP, nonlinear relationships can be addressed, enabling angle estimation. Based on the results of this study, we anticipate the effective utilization of the developed system in smart wearables and healthcare.

A Study on the Classification of Hand-written Korean Character Types using Hough Transform (Hough Transform을 이용한 한글 필기체 형식 분류에 관한 연구)

  • 구하성;고경화
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.19 no.10
    • /
    • pp.1991-2000
    • /
    • 1994
  • In this paper, an alagorithm with six types of classification is suggested for the recognition system of hand-written Korean characters. After thinning process and truncating process for noise redection. The input images are used generalized by $64\times64$ size. The six type classification is composed of preliminary and secondary classification process by using the learning algoritm of multi-layer perceptron. Subblock Hough transform is used as local feature and sampling Hough transform is used as global feature. Experiment is conducted for 1800 characters which is written 31 times per each type by 10 persons. The 90% recognition rate is resulted by the preliminary classification of detection the final consonant and by the secondary classification of detecting the vowels.

  • PDF

Real-Time Face Detection by Estimating the Eye Region Using Neural Network (신경망 기반 눈 영역 추정에 의한 실시간 얼굴 검출 기법)

  • 김주섭;김재희
    • Proceedings of the IEEK Conference
    • /
    • 2001.06d
    • /
    • pp.21-24
    • /
    • 2001
  • In this paper, we present a fast face detection algorithm by estimating the eye region using neural network. To implement a real time face detection system, it is necessary to reduce search space. We limit the search space just to a few pairs of eye candidates. For the selection of them, we first isolate possible eye regions in the fast and robust way by modified histogram equalization. The eye candidates are paired to form an eye pair and each of the eye pair is estimated how close it is to a true eye pair in two aspects : One is how similar the two eye candidates are in shape and the other is how close each of them is to a true eye image A multi-layer perceptron neural network is used to find the eye candidate region's closeness to the true eye image. Just a few best candidates are then verified by eigenfaces. The experimental results show that this approach is fast and reliable. We achieved 94% detection rate with average 0.1 sec Processing time in Pentium III PC in the experiment on 424 gray scale images from MIT, Yale, and Yonsei databases.

  • PDF

Automatic Recognition of Pitch Accents Using Time-Delay Recurrent Neural Network (시간지연 회귀 신경회로망을 이용한 피치 악센트 인식)

  • Kim, Sung-Suk;Kim, Chul;Lee, Wan-Joo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.23 no.4E
    • /
    • pp.112-119
    • /
    • 2004
  • This paper presents a method for the automatic recognition of pitch accents with no prior knowledge about the phonetic content of the signal (no knowledge of word or phoneme boundaries or of phoneme labels). The recognition algorithm used in this paper is a time-delay recurrent neural network (TDRNN). A TDRNN is a neural network classier with two different representations of dynamic context: delayed input nodes allow the representation of an explicit trajectory F0(t), while recurrent nodes provide long-term context information that can be used to normalize the input F0 trajectory. Performance of the TDRNN is compared to the performance of a MLP (multi-layer perceptron) and an HMM (Hidden Markov Model) on the same task. The TDRNN shows the correct recognition of $91.9{\%}\;of\;pitch\;events\;and\;91.0{\%}$ of pitch non-events, for an average accuracy of $91.5{\%}$ over both pitch events and non-events. The MLP with contextual input exhibits $85.8{\%},\;85.5{\%},\;and\;85.6{\%}$ recognition accuracy respectively, while the HMM shows the correct recognition of $36.8{\%}\;of\;pitch\;events\;and\;87.3{\%}$ of pitch non-events, for an average accuracy of $62.2{\%}$ over both pitch events and non-events. These results suggest that the TDRNN architecture is useful for the automatic recognition of pitch accents.

Design of hetero-hybridized feed-forward neural networks with information granules using evolutionary algorithm

  • Roh Seok-Beom;Oh Sung-Kwun;Ahn Tae-Chon
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2005.11a
    • /
    • pp.483-487
    • /
    • 2005
  • We introduce a new architecture of hetero-hybridized feed-forward neural networks composed of fuzzy set-based polynomial neural networks (FSPNN) and polynomial neural networks (PM) that are based on a genetically optimized multi-layer perceptron and develop their comprehensive design methodology involving mechanisms of genetic optimization and Information Granulation. The construction of Information Granulation based HFSPNN (IG-HFSPNN) exploits fundamental technologies of Computational Intelligence(Cl), namely fuzzy sets, neural networks, and genetic algorithms(GAs) and Information Granulation. The architecture of the resulting genetically optimized Information Granulation based HFSPNN (namely IG-gHFSPNN) results from a synergistic usage of the hybrid system generated by combining new fuzzy set based polynomial neurons (FPNs)-based Fuzzy Neural Networks(PM) with polynomial neurons (PNs)-based Polynomial Neural Networks(PM). The design of the conventional genetically optimized HFPNN exploits the extended Group Method of Data Handling(GMDH) with some essential parameters of the network being tuned by using Genetie Algorithms throughout the overall development process. However, the new proposed IG-HFSPNN adopts a new method called as Information Granulation to deal with Information Granules which are included in the real system, and a new type of fuzzy polynomial neuron called as fuzzy set based polynomial neuron. The performance of the IG-gHFPNN is quantified through experimentation.

  • PDF

Computation of Noncentral F Probabilities using multilayer neural network (다층 신경 망을 이용한 비중심F분포 확률계산)

  • Gu, Sun-Hee
    • The KIPS Transactions:PartB
    • /
    • v.9B no.3
    • /
    • pp.271-276
    • /
    • 2002
  • The test statistic in ANOVA tests has a single or doubly noncentral F distribution and the noncentral F distribution is applied to the calculation of the power functions of tests of general linear hypotheses. Although various approximations of noncentral F distribution are suggested, they are troublesome to compute. In this paper, the calculation of noncentral F distribution is applied to the neural network theory, to solve the computation problem. The neural network consists of the multi-layer perceptron structure and learning process has the algorithm of the backpropagation. Using fables and figs, comparisons are made between the results obtained by neural network theory and the Patnaik's values. Regarding of accuracy and calculation, the results by neural network are efficient than the Patnaik's values.