• 제목/요약/키워드: Multi-Layer Neural Network

검색결과 515건 처리시간 0.025초

Web access prediction based on parallel deep learning

  • Togtokh, Gantur;Kim, Kyung-Chang
    • 한국컴퓨터정보학회논문지
    • /
    • 제24권11호
    • /
    • pp.51-59
    • /
    • 2019
  • 웹에서 정보 접근에 대한 폭발적인 주문으로 웹 사용자의 다음 접근 페이지를 예측하는 필요성이 대두되었다. 웹 접근 예측을 위해 마코브(markov) 모델, 딥 신경망, 벡터 머신, 퍼지 추론 모델 등 많은 모델이 제안되었다. 신경망 모델에 기반한 딥러닝 기법에서 대규모 웹 사용 데이터에 대한 학습 시간이 엄청 길어진다. 이 문제를 해결하기 위하여 딥 신경망 모델에서는 학습을 여러 컴퓨터에 동시에, 즉 병렬로 학습시킨다. 본 논문에서는 먼저 스파크 클러스터에서 다층 Perceptron 모델을 학습 시킬 때 중요한 데이터 분할, shuffling, 압축, locality와 관련된 기본 파라미터들이 얼마만큼 영향을 미치는지 살펴보았다. 그 다음 웹 접근 예측을 위해 다층 Perceptron 모델을 학습 시킬 때 성능을 높이기 위하여 이들 스파크 파라미터들을 튜닝 하였다. 실험을 통하여 논문에서 제안한 스파크 파라미터 튜닝을 통한 웹 접근 예측 모델이 파라미터 튜닝을 하지 않았을 경우와 비교하여 웹 접근 예측에 대한 정확성과 성능 향상의 효과를 보였다.

자동조정기능의 지능형제어를 위한 신경회로망 응용 (Application of Neural Network for the Intelligent Control of Computer Aided Testing and Adjustment System)

  • 구영모;이승구;이영민;우광방
    • 전자공학회논문지B
    • /
    • 제30B권1호
    • /
    • pp.79-89
    • /
    • 1993
  • This paper deals with a computer aided control of an adjustment process for the complete electronic devices by means of an application of artificial neural network and an implementation of neuro-controller for intelligent control. Multi-layer neural network model is employed as artificial neural network with the learning method of the error back propagation. Information initially available from real plant under control are the initial values of plant output, and the augmented plant input and its corresponding plant output at that time. For the intelligent control of adjustment process utilizing artificial neural network, the neural network emulator (NNE) and the neural network controller(NNC) are developed. The initial weights of each neural network are determined through off line learning for the given product and it is also employed to cope with environments of the another product by on line learning. Computer simulation, as well as the application to the real situation of proposed intelligent control system is investigated.

  • PDF

낙동강유역에서 신경망 모델을 이용한 강우예측에 관한 연구 - 다변량 모델과의 비교 - (A Study on the Rainfall Forecasting Using Neural Network Model in Nakdong River Basin - A Comparison with Multivariate Model-)

  • 조현경;이증석
    • 한국산업융합학회 논문집
    • /
    • 제2권2호
    • /
    • pp.51-59
    • /
    • 1999
  • This study aims at the development of the techniques for the rainfall forecasting in river basins by applying neural network theory and compared with results of Multivariate Model (MVM). This study forecasts rainfall and compares with a observed values in the San Chung gauging stations of Nakdong river basin for the rainfall forecasting of river basin by proposed Neural Network Model(NNM). For it, a multi-layer Neural Network is constructed to forecast rainfall. The neural network learns continuous-valued input and output data. The result of rainfall forecasting by the Neural Network Model is superior to the results of Multivariate Model for rainfall forecasting in the river basin. So I think that the Neural Network Model is able to be much more reliable in the rainfall forecasting.

  • PDF

Shear Capacity of Reinforced Concrete Beams Using Neural Network

  • Yang, Keun-Hyeok;Ashour, Ashraf F.;Song, Jin-Kyu
    • International Journal of Concrete Structures and Materials
    • /
    • 제1권1호
    • /
    • pp.63-73
    • /
    • 2007
  • Optimum multi-layered feed-forward neural network (NN) models using a resilient back-propagation algorithm and early stopping technique are built to predict the shear capacity of reinforced concrete deep and slender beams. The input layer neurons represent geometrical and material properties of reinforced concrete beams and the output layer produces the beam shear capacity. Training, validation and testing of the developed neural network have been achieved using 50%, 25%, and 25%, respectively, of a comprehensive database compiled from 631 deep and 549 slender beam specimens. The predictions obtained from the developed neural network models are in much better agreement with test results than those determined from shear provisions of different codes, such as KBCS, ACI 318-05, and EC2. The mean and standard deviation of the ratio between predicted using the neural network models and measured shear capacities are 1.02 and 0.18, respectively, for deep beams, and 1.04 and 0.17, respectively, for slender beams. In addition, the influence of different parameters on the shear capacity of reinforced concrete beams predicted by the developed neural network shows consistent agreement with those experimentally observed.

CUDA를 이용한 Convolutional Neural Network의 효율적인 구현 (Efficient Implementation of Convolutional Neural Network Using CUDA)

  • 기철민;조태훈
    • 한국정보통신학회논문지
    • /
    • 제21권6호
    • /
    • pp.1143-1148
    • /
    • 2017
  • 현재 인공지능과 딥 러닝이 사회적인 이슈로 떠오르고 있는 추세이며, 다양한 분야에 이 기술들을 응용하고 있다. 인공지능 분야의 여러 알고리즘들 중에서 각광받는 방법 중 하나는 Convolutional Neural Network이다. Convolutional Neural Network를 적은 양의 데이터에서 이용하거나, Layer의 구조가 복잡하지 않은 경우에는 학습시간이 길지 않아 속도에 크게 신경 쓰지 않아도 되지만, 학습 데이터의 크기가 크고, Layer의 구조가 복잡할수록 학습시간이 상당히 오래 걸린다. 이로 인해 GPU를 이용하여 병렬처리를 하는 방법을 많이 사용하는데, 본 논문에서는 CUDA를 이용한 Convolutional Neural Network를 구현하였으며, 비교에 사용한 Framework/Program들 보다 학습속도가 빨라지고 큰 데이터를 학습 시키는데 더욱 효율적으로 진행하도록 한다.

Neural Network Training Using a GMDH Type Algorithm

  • Pandya, Abhijit S.;Gilbar, Thomas;Kim, Kwang-Baek
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제5권1호
    • /
    • pp.52-58
    • /
    • 2005
  • We have developed a Group Method of Data Handling (GMDH) type algorithm for designing multi-layered neural networks. The algorithm is general enough that it will accept any number of inputs and any sized training set. Each neuron of the resulting network is a function of two of the inputs to the layer. The equation for each of the neurons is a quadratic polynomial. Several forms of the equation are tested for each neuron to make sure that only the best equation of two inputs is kept. All possible combinations of two inputs to each layer are also tested. By carefully testing each resulting neuron, we have developed an algorithm to keep only the best neurons at each level. The algorithm's goal is to create as accurate a network as possible while minimizing the size of the network. Software was developed to train and simulate networks using our algorithm. Several applications were modeled using our software, and the result was that our algorithm succeeded in developing small, accurate, multi-layer networks.

신경망을 이용한 반도체 공정 시뮬레이터 : 포토공정 오버레이 사례연구 (Neural network simulator for semiconductor manufacturing : Case study - photolithography process overlay parameters)

  • 박상훈;서상혁;김지현;김성식
    • 한국시뮬레이션학회논문지
    • /
    • 제14권4호
    • /
    • pp.55-68
    • /
    • 2005
  • The advancement in semiconductor technology is leading toward smaller critical dimension designs and larger wafer manufactures. Due to such phenomena, semiconductor industry is in need of an accurate control of the process. Photolithography is one of the key processes where the pattern of each layer is formed. In this process, precise superposition of the current layer to the previous layer is critical. Therefore overlay parameters of the semiconductor photolithography process is targeted for this research. The complex relationship among the input parameters and the output metrologies is difficult to understand and harder yet to model. Because of the superiority in modeling multi-nonlinear relationships, neural networks is used for the simulator modeling. For training the neural networks, conjugate gradient method is employed. An experiment is performed to evaluate the performance among the proposed neural network simulator, stepwise regression model, and the currently practiced prediction model from the test site.

  • PDF

The Design of Genetically Optimized Multi-layer Fuzzy Neural Networks

  • Park, Byoung-Jun;Park, Keon-Jun;Lee, Dong-Yoon;Oh, Sung-Kwun
    • 한국지능시스템학회논문지
    • /
    • 제14권5호
    • /
    • pp.660-665
    • /
    • 2004
  • In this study, a new architecture and comprehensive design methodology of genetically optimized Multi-layer Fuzzy Neural Networks (gMFNN) are introduced and a series of numeric experiments are carried out. The gMFNN architecture results from a synergistic usage of the hybrid system generated by combining Fuzzy Neural Networks (FNN) with Polynomial Neural Networks (PNN). FNN contributes to the formation of the premise part of the overall network structure of the gMFNN. The consequence part of the gMFNN is designed using PNN. The optimization of the FNN is realized with the aid of a standard back-propagation learning algorithm and genetic optimization. The development of the PNN dwells on the extended Group Method of Data Handling (GMDH) method and Genetic Algorithms (GAs). To evaluate the performance of the gMFNN, the models are experimented with the use of a numerical example.

신경망을 이용한 음소분할에 관한 연구 (A Study on the Phoneme Segmentation Using Neural Network)

  • 이광석;이광진;조신영;허강인;김명기
    • 한국통신학회논문지
    • /
    • 제17권5호
    • /
    • pp.472-481
    • /
    • 1992
  • 본 연구에서는 신경망으로 음성신호를 음소분할 할 수 있는 알고리즘을 제시하고 시뮬레이션을 통해 타당성을 검토하였다. 제안된 신경망은 1개의 은닉층을 가지는 다층 인식자로 구성하였다. 실험결고 연속보음과 6개 지명음을 자료로 하여 종속화자인 경우 100% 독립화자인 경우 99.4% 그리고 6개 지명음을 동시에 학습하여 각 지명음에 대해 음소분할한 결과는 94.5%의 정합율을 얻었다.

  • PDF

인공신경망기법을 이용한 하천수질인자의 예측모델링 - BOD와 DO를 중심으로- (Predictive Modeling of River Water Quality Factors Using Artificial Neural Network Technique - Focusing on BOD and DO-)

  • 조현경
    • 한국환경과학회지
    • /
    • 제9권6호
    • /
    • pp.455-462
    • /
    • 2000
  • This study aims at the development of the model for a forecasting of water quality in river basins using artificial neural network technique. Water quality by Artificial Neural Network Model forecasted and compared with observed values at the Sangju q and Dalsung stations in Nakdong river basin. For it, a multi-layer neural network was constructed to forecast river water quality. The neural network learns continuous-valued input and output data. Input data was selected as BOD, CO discharge and precipitation. As a result, it showed that method III of three methods was suitable more han other methods by statistical test(ME, MSE, Bias and VER). Therefore, it showed that Artificial Neural Network Model was suitable for forecasting river water quality.

  • PDF