• Title/Summary/Keyword: Multi-Layer Neural Network

Search Result 516, Processing Time 0.027 seconds

Design and Performance Evaluation of a Neural Network based Adaptive Filter for Application of Digital Controller (디지털 제어기용 적응 신경망 필터의 설계 및 성능평가)

  • 김진선;신우철;홍준희
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.345-351
    • /
    • 2004
  • This Paper describes a nonlinear adaptive noise filter using neural network for digital controller system. Back-Propagation Learning Algorithm based MLP (Multi Layer Perceptron)is used an adaptive filters. In this paper. it assume that the noise of primary input in the adaptive noise canceller is not the same characteristic as that of the reference input. Experimental reaults show that the neural network base noise canceller outperforms the linear noise canceller. Especially to make noise cancel close to realtime, Primary input is divided by unit and each divided part is processed for very short time than all the processed data are unified to whole data.

  • PDF

A Study on Multi-site Rainfall Prediction Model using Real-time Meteorological Data (실시간 기상자료를 이용한 다지점 강우 예측모형 연구)

  • Jung, Jae-Sung;lee, Jang-Choon;Park, Young-Ki
    • Journal of Environmental Science International
    • /
    • v.6 no.3
    • /
    • pp.205-211
    • /
    • 1997
  • For the prediction of multi-site rainfall with radar data and ground meteorological data, a rainfall prediction model was proposed, which uses the neural network theory, a kind of artifical Intelligence technique. The Input layer of the prediction model was constructed with current ground meteorological data, their variation, moving vectors of rain- fall field and digital terrain of the measuring site, and the output layer was constructed with the predicted rainfall up to 3 hours. In the application of the prediction model to the Pyungchang river basin, the learning results of neural network prediction model showed more Improved results than the parameter estimation results of an existing physically based model. And the proposed model comparisonally well predicted the time distribution of ralnfall.

  • PDF

APPLICATION OF COULOMB ENERGY NETWORK TO KOREAN RECOGNITION (Coulomb Energy Network를 이용한 한글인식 Neural Network)

  • Lee, Kyung-Hee;Lee, Won-Don
    • Annual Conference on Human and Language Technology
    • /
    • 1989.10a
    • /
    • pp.267-271
    • /
    • 1989
  • 최근 Scofield는 coulomb energy network에 적용할 수 있는 learning algorithm(supervised learning algorithm)을 제안하였다. 이 learning algorithm은 multi-layer network에도 쉽게 적용이 가능하고 한 layer 에서 발생한 error가 다른 layer에 영향을 주지 않아서 system을 modular하게 구성할 수가 있으며 각 layer를 독립적으로 learning 시킬 수 있는 특징이 있다. 본 논문에서는 coulomb energy network를 이용하여 한글인식을 위한 neural network를 구현하여 인식실험을 한 결과와 구현한 network 에서 인식율을 높이기 위한 방안 (2 stage learning) 을 제시한다.

  • PDF

Multi-resolution DenseNet based acoustic models for reverberant speech recognition (잔향 환경 음성인식을 위한 다중 해상도 DenseNet 기반 음향 모델)

  • Park, Sunchan;Jeong, Yongwon;Kim, Hyung Soon
    • Phonetics and Speech Sciences
    • /
    • v.10 no.1
    • /
    • pp.33-38
    • /
    • 2018
  • Although deep neural network-based acoustic models have greatly improved the performance of automatic speech recognition (ASR), reverberation still degrades the performance of distant speech recognition in indoor environments. In this paper, we adopt the DenseNet, which has shown great performance results in image classification tasks, to improve the performance of reverberant speech recognition. The DenseNet enables the deep convolutional neural network (CNN) to be effectively trained by concatenating feature maps in each convolutional layer. In addition, we extend the concept of multi-resolution CNN to multi-resolution DenseNet for robust speech recognition in reverberant environments. We evaluate the performance of reverberant speech recognition on the single-channel ASR task in reverberant voice enhancement and recognition benchmark (REVERB) challenge 2014. According to the experimental results, the DenseNet-based acoustic models show better performance than do the conventional CNN-based ones, and the multi-resolution DenseNet provides additional performance improvement.

Boundary estimation in electrical impedance tomography with multi-layer neural networks.

  • Kim, J.H.;Jeon, H.J.;Choi, B.Y.;Kim, M.C.;Kim, S.;Kim, K.Y.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.553-558
    • /
    • 2003
  • The boundary estimation problem is used to estimate the shape of organic depend on the phase of the cardiac cycle or interested in the detection of the location and size of anomalies with resistivity values different from the background tissues such as nuclear reactor. And we can use the method to solve the optimal solution such as modified Newton raphson, kalman filter, extended kalman filter, etc. But, this method consumes much time and is sensitive to the initial value and noise in the estimation of the unknown shape. In the paper, we propose that multi-layer neural networks estimate the boundary of the unknown object using Fourier coefficient. This method can be used at the real time estimation and have strong characteristics at the noise and initial value. It uses voltage change; difference the homogeneous voltage to the non-homogeneous voltage, and change of Fourier coefficient change to train multi-layer neural network. After train, we can have real time estimation using this method.

  • PDF

An Application of Neural Ntwork For the Adjustment Process during Electronics Production (전자제품 생산의 조정공정을 위한 신경회로망 응용)

  • 장석호;정영기;감도영;우광방
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.310-313
    • /
    • 1996
  • In this paper, a neural control algorithm is proposed on the automation of adjustment process. The adjustment processes in camcoder production line are modelled, and the processes are adjusted automatically by means of off-line supervisory trained multi-layer neural network. We have made many experiments on the several adjustment processes by using the control algorithm. There are many unexpected troubles to achieve the desirable adjust time in the practical application. To overcome those, some auxiliary algorithms are demanded. As a result, our proposed algorithm has some advantages - simple architecture, easy extraction of the training data without expertises, adaptability to the varying systems, and wide application for the other resemble processes.

  • PDF

Improved Modeling of I-V Characteristic Based on Artificial Neural Network in Photovoltaic Systems (태양광 시스템의 인공신경망 기반 I-V 특성 모델링 향상)

  • Park, Jiwon;Lee, Jonghwan
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.3
    • /
    • pp.135-139
    • /
    • 2022
  • The current-voltage modeling plays an important role in characterizing photovoltaic systems. A solar cell has a nonlinear characteristic with various parameters influenced by the external environments such as the irradiance and the temperature. In order to accurately predict current-voltage characteristics at low irradiance, the artificial neural networks are applied to effectively quantify nonlinear behaviors. In this paper, a multi-layer perceptron scheme that can make accurate predictions is employed to learn complex formulas for large amounts of continuous data. The simulated results of artificial neural networks model show the accuracy improvement by using MATLAB/Simulink.

The nonlinear function approximation based on the neural network application

  • Sugisaka, Masanori;Itou, Minoru
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.462-462
    • /
    • 2000
  • In this paper, genetic algorithm (GA) is the technique to search for the optimal structures (i,e., the kind of neural network, the number of hidden neuron, ..) of the neural networks which are used approximating a given nonlinear function, In this paper, we used multi layer feed-forward neural network. The decision method of synapse weights of each neuron in each generation used back-propagation method. In this study, we simulated nonlinear function approximation in the temperature control system.

  • PDF

Structure Optimization of Neural Networks using Rough Set Theory (러프셋 이론을 이용한 신경망의 구조 최적화)

  • 정영준;이동욱;심귀보
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.03a
    • /
    • pp.49-52
    • /
    • 1998
  • Neural Network has good performance in pattern classification, control and many other fields by learning ability. However, there is effective rule or systematic approach to determine optimal structure. In this paper, we propose a new method to find optimal structure of feed-forward multi-layer neural network as a kind of pruning method. That eliminating redundant elements of neural network. To find redundant elements we analysis error and weight changing with Rough Set Theory, in condition of executing back-propagation leaning algorithm.

  • PDF

Precision indices of neural networks for medicines: structure-activity correlation relationships

  • Zhu, Hanxi;Aoyama, Tomoo;Yoshihara, Ikuo;Lee, Seung-Woo;Kim, Wook-Hyun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.481-481
    • /
    • 2000
  • We investigated the structure-activity relationships on use of multi-layer neural networks. The relationships are techniques required in developments of medicines. Since many kinds of observations might be adopted on the techniques, we discussed some points between the observations and the properties of multi-layer neural networks. In the structure-activity relationships, an important property is not that standard deviations are nearly equal to zero for observed physiological activity, but prediction ability for unknown medicines. Since we adopted non-linear approximation, the function to represent the activity can be defined by observations; therefore, we believe that the standard deviations have not significance. The function was examined by "leave-one-out" method, which was originally introduced for the multi-regression analysis. In the linear approximation, the examination is significance, however, we believe that the method is inappropriate in case of nonlinear fitting as neural networks; therefore, we derived a new index fer the relationships from the differential of information propagation in the neural network. By using the index, we discussed physiological activity of an anti-cancer medicine, Mitomycine derivatives. The neuro-computing suggests that there is no direction to extend the anti-cancer activity of Mitomycine, which is close to the trend of anticancer developing.

  • PDF