
ICCAS2003                           October 22-25, Gyeongju TEMF Hotel, Gyeongju, Korea      
 

 
1. INTRODUCTION  

In electrical impedance tomography(EIT) the distribution of 
impedances inside an object(‘image’) is sought by applying 
specified currents at some electrodes, and performing 
measurements of the voltage at other electrodes. The 
impedance distribution is usually estimated in fixed element 
inside the object. The implicit assumption is most often that 
the impedance in each element is more dependent of the other 
element. In many cases, such as in the impedance imaging of 
the chest, the heart muscle and blood, this model might not be 
a feasible one. The poor spatial resolution of EIT that is due to 
diffusive characteristics of the problem does not usually allow 
for the estimation of internal boundaries in the interest. To 
improve spatial resolution, we have to increase fixed element. 
But the uncertain parameter has to increase too. So, the many 
researchers have the interest at the boundary estimation 
problem that wish to know the shape of the object more than 
the impedance distribution [3-6].  
To use this method, we have an assumption that the 

impedance distributions are known a prior in the boundary 
estimation problem. And we can estimate the optimal solution 
for express the real object using many optimization 
methods[1-5]. The modified Newton Raphson method(mNR) 
that have the good performance  is used  usually in one of 
the many method[7][8]. But this method consumes much time 
and is sensitive to the noise. So, it is difficult to apply a field 
that fast response is required and system has noise. 
In this paper, we suggest new algorithm using multi-layer 

neural network and the boundary of the object expresses using 
Fourier series.  
This method can be used when the fast response is required, 

the system has noise.  
It uses voltage change; difference the homogeneous voltage 

to the non-homogeneous voltage, and change of Fourier 
coefficient change to train multi-layer neural network. After 
train, we can have fast response using this method. 
Finally, the results of simulation are given to demonstrate the 

validity of the proposed algorithm. 
 

2. Method 

2.1. Forward Problem  
The forward problem is to compute the electrical potential 

when the injected current and the resistivity distribution are 
given. When electrical currents ),,2,1( LlIl L=  are 

injected into the object 2R∈Ω  through the electrodes 
),,2,1( Llel L=  attached on the boundary Ω∂  and the 

resistivity distribution ),( yxρ is know for the Ω , the 
corresponding induced electrical potential ),( yxu  can be 
determined uniquely from following partial differential 
equation, which can be derived from the Maxwell equations: 
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The boundary conditions in the complete electrode model are 

given as: 
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where lz is the effective contact impedance between 

thl electrode and electrolyte, lU are the measured potential 
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on the thl  electrode, le is thl  electrode, n is outward 
unit normal, and L is the number of electrodes. The boundary 
conditions (2)-(4) take into account the shunting effect (i.e. the 
voltage lU is constant over the electrode le ) and the 
additional voltage drop due to the contact impedance. 

In addition, the follow two conditions for the injected 
currents and measured voltages are needed to ensure the 
existence and uniqueness of the solution [11]: 
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In general, the forward problem cannot be solved analytically. 

So, we have to resort to the numerical solution. In this paper, 
we used the FEM to obtain the numerical solution. In the FEM, 
the object area is discretized into sufficiently small elements 
having a node at each corner and it is assumed that the 
resistivity distribution is constant within each element. The 
potential at each node and the “referenced” electrode voltages, 
defined bye the vector 1)1( ×−+∈ LMRv , are calculated by 

discretizing (1) into cYv = , where )1()1( −+×−+∈ LMLMRY  
is so called stiffness matrix and M is the number of FEM 
nodes, Y and c  are the functions of the resistivity 
distribution inside the object and the injected currents through 
the electrodes, respectively. For more details on the forward 
solution and the FEM approach, see[3]  

 

2.2. Boundary expression and Measurement Voltage  
In this paper, we express the boundary of the object using the 
Fourier series. And the representation equation is as follow[5].  
 

∑ 












=








=

=

θ

θγ

θγN

n y
n

y
n

x
n

x
n

s

s
y
x

sC
1 )(

)(
)(

l

l

l                      (6) 

 
where )(sCl , m,,1Ll =  is the boundary of the object, 

m is the number of the object, )(snθ  are periodic and 
smooth basis function, we use basis function of the form: 
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where ]10[∈s , β  denotes either x  or  y . And  θN  
is the dimension of the Fourier series.  

As we use equation (6), the boundaries of the object are 
identified with the vector γ  of the shape coefficients.  
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where θγ mNR2∈ . 
    The relation of the measured voltages on the electrodes 
and the Fourier coefficient γ above defined are very 
nonlinear. We have to make relation of both as follow. 
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Fig. 1. A schematic representation of one FEM intercepted by 
the region boundaries )(sCl . 

 
When the one FEM mesh intercepted the boundaries of the 

object as Fig. 1., we have to solve the partial differential 
equation from FEM mesh separated. The FEM 
implementation of this relation is accomplished in 4 stages as 
follows [5]: 
 
Step1: Classification of mesh nodes as nodes inside of outside 
a given boundaries )(sCl . This is accomplished by counting 
the number of boundary crossings λ of a horizontal line 

drawn through the node T
iii yxN ),(= .  
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Step2: Classification of the mesh element to sets of element 
inside the region and elements intercepted by the 
boundaries )(sCl .  
 
Step3: Determination of the position ),( yx  in the intersection 

points )( 1PCl  and )( 2PCl  for each element, see Fig.1. 

The intersection of )(sCl  with the edge from iN  to jN  

is obtained from  
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with condition 10 ≤< ε . 
 
Step4: Computation of the partial differential equation in 
equation (1). In this process we approximate the boundary 
lC with a straight line from the intersection point )( 1PCl   

to the point )( 2PCl  and then split the intercepted element 
into two parts. Therefore, we determine resistivity on the each 
FEM mesh as the rate of the triangle area [5]. 
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Where lσ  is defined the resistivity of the object, rσ is the 

resistivity of the background, lS is the area of the split 

triangle on the object, and rS is the area of split triangle on 
the background. The integral part is the function of the FEM 
solver. This FEM solver is evaluated using the conventional 
global-to-local element mappings.  

Finally, we can make the relation of the measurement 
voltage with the Fourier coefficient as above step.  

 

2.3. Boundary estimation using neural network  
In this paper, we use multi-layer neural network. The neural 

network trains weighting matrix 21,WW  using the relation of 
the change of the voltage on the electrode and the change of 
the furrier coefficient as Fig.2. 

The following figure express multi-layer neural network.  
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Fig. 2. Multi-layer neural network. 
 

Where nf  is defined the change of the voltage on each 

frame, k
lout  is the output of the thk neuron.                                              

To trains the weighting matrix 1W , 2W  of the neural 
network, we use training pattern which is the change of the 
voltage ( nf ) and the change of the Fourier coefficient 

( knownγ∆ ). The changes of the voltage are the difference of 
the voltage from reference shape to the changed shape. These 
voltages have to known beforehand to trains.  

We can define the change of the voltage on the electrodes 
as following equation [9]. 
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Where nv is defined the thn voltage from measurement 

voltage )( lU  on each frame, js  is the number of the target 

sampling data.  And refv  is the voltage of the reference 
voltage.  

We can define the change of the Fourier coefficient about 

the change of the voltage in a next equation (9). 
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Where knownγ∆  is the difference of the thi coefficient from 

the reference coefficient refγ  and this variable is variable to 
know beforehand to train. 
Using the beforehand knowing parameter ( ), knownnf γ∆ , we 
can update the weighting matrix by learning algorithm as 
follow step: 
 
Step 1: Initially, set all weighting, 1W and 2W , random 
numbers.  This weight controlled suitable interval. Select the 
parameters η  andα . 

Step 2: Randomly take one unmarked pair( ), knownnf γ∆ of 
the training set for the further steps and mark it as used. 
Step 3: The forward calculation.  
•  Input neuron. 
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•  The input and the output of the hidden layer. 
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•  The input and the output of the output layer.  
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where iOut , jOut , kOut  are output of the neuron in the 
input layer, the hidden layer and the output layer. 

inet , jnet , knet  are input of the neuron in the each layer.  
The used activation function and its derivative are given by: 
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where b  is the threshold of the activation function.  
 
Step 4: The backward calculation. 
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Step 5: Calculate the weight changes and update the weights.  
 

ij OutW ⋅⋅=∆ δη1  
jk OutW ⋅⋅=∆ δη2                             (19) 
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Step 6: Repeat from step 2 while there are unused pair in the 

training. 
 
Step 7: Set all pairs in the training set to unused. 
 
Step 8: Repeat from step 2 until the stop condition is true. 
 
Training continues until the overall error in one training cycle 
is sufficiently small, this stop condition is given by: 
 

ε<E                                         (20) 
 

This acceptable error ε has to be selected carefully, if ε is 
too large the network is under-trained and lacks in 
performance, if ε is selected too small the network will be 
biased towards the training set. 
The used performance Index error E calculated by: 
 

∑ −∆= 2)( k
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We can estimate the change of the fourier coefficient using 

the change of the voltage in the actual phantom and the 
updated weights 1W , 2W . 
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where γ̂∆ is the estimated coefficient, and nf

~
is the change 

of the voltage in the actual phantom. 
 

3. Simulation 
 

To show the effectiveness of our approach, we assume that 
all the 32 channels are measured for a given current pattern. In 
the computation of the synthetic data by the FEM-model, the 
body Ω  was discretized into 3104 triangular element, the 
number of nodes being 1681. We used the phantom to have a 
radius 4 cm , and the resistivity of the object is cmΩ600 , the 
resistivity of the background is cmΩ300 .      

For the current injection we use the opposite current 
patterns, the input of the neural network are the change of the 
voltage to have 512 and the change of the coefficient to have 
the target sampling data 2608( )js . The number of units in the 

hidden layer has been selected 48. 
We assume that the shape of the object has sufficiently to 

an oval form as like bubble. Consequently, the dimension of 
the Fourier series assumes 3=θN . 
We do computer simulation at one object to demonstrate 
usefulness of proposed scheme. 

The results of the simulation with 1% random noise are 
shown in Fig. 3. It can be seen that the results with the 
proposed approach are not better than with the modified 
Newton Raphson.  

 
(a)  0.75]  0.40  1.25  0.20   1.25  0.75 [=γ  

 

 
(b) 1.25]  0.25  1.00  0.20   0.75   1.25-[=γ  

 
Fig. 3. Fourier coefficient estimated by multi-layered neural 

network with 1% noise. 
 

We compared modified Newton Raphson to proposed 
scheme in the Fig. 4., when noise of 1%, 5% and  10%  
were added to the simulated voltage. It can be seen that the 
results with modified Newton Raphson can not guarantee that 
it can converge with 5% noise. But, the proposed scheme 
guarantees that it can converge with 5% and 10% noise.  
 

 
(a) 1.25]  0.25  1.00  0.20   0.75   1.25-[=γ  

 
Fig. 4. Fourier coefficient estimated by multi-layered neural 

network with 1%, 5%, and 10% noise. 
 

In the next simulation, we consider the multi-object, when 
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there exist noise 0.1%, 1% and 3%, see Fig. 5, Fig.6.  The 
reference voltages in this simulation are voltages on the 
phantom to have homogeneous resistivity. The used object in 
the simulation not to be trained, we can estimate the various 
object using this algorithm. 

We can see the performance of the proposed scheme better 
than modified Newton Raphson method with 0.1% noise, see 
Fig. 5.  
 

 
(a)  ]   1  0   2-   0    1     2- 1  0   0.2    0    1   0.2 [=γ  
 

 
(b) ]   1  0     1-      0    1     1-  1  0   0.5    0    1   0.5 [=γ  
 

Fig. 5.  Fourier coefficient estimated by multi-layered 
neural network with 0.1% noise. 

 
If a measured voltage, calculation using FEM, has over 1% 

of noise, the conventional mNR method not to be obtained to 
the object. But the proposed scheme to have robust 
characteristic against the noise can estimate the coefficient of 
the object, see Fig.6. 
 

 
(a) 1]  0   1.5   0  1  2- 1  0  1   0  1  [13 =γ  

 
Fig. 6. Fourier coefficient estimated by multi-layered neural 

network with 1%, 3%, and 10% noise. 
 

4. Conclusions 
 

We proposed multi-layer neural network to estimate the 
shape of the object promptly using the relation the changes of 
the measurement voltage and the change of the Fourier 
coefficient. And we obtained the characteristic of the 
robustness against noise. 

In the numerical simulation, we did simulation about 
multi-object in the phantom. The proposed scheme had a good 
performance more than the mNR with noise. And we obtained 
the fast processing time more than the mNR. 
In the further study, we need to modify the parameter, the 
number of the hidden neuron, the training pattern data, to 
improve the performance.  
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