• 제목/요약/키워드: Multi-Input and Multi-Output Control

검색결과 290건 처리시간 0.023초

Temperature Control of Ultrasupercritical Once-through Boiler-turbine System Using Multi-input Multi-output Dynamic Matrix Control

  • Moon, Un-Chul;Kim, Woo-Hun
    • Journal of Electrical Engineering and Technology
    • /
    • 제6권3호
    • /
    • pp.423-430
    • /
    • 2011
  • Multi-input multi-output (MIMO) dynamic matrix control (DMC) technique is applied to control steam temperatures in a large-scale ultrasupercritical once-through boiler-turbine system. Specifically, four output variables (i.e., outlet temperatures of platen superheater, finish superheater, primary reheater, and finish reheater) are controlled using four input variables (i.e., two spray valves, bypass valve, and damper). The step-response matrix for the MIMO DMC is constructed using the four input and the four output variables. Online optimization is performed for the MIMO DMC using the model predictive control technique. The MIMO DMC controller is implemented in a full-scope power plant simulator with satisfactory performance.

Robust Adaptive Output Feedback Control Design for a Multi-Input Multi-Output Aeroelastic System

  • Wang, Z.;Behal, A.;Marzocca, P.
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제12권2호
    • /
    • pp.179-189
    • /
    • 2011
  • In this paper, robust adaptive control design problem is addressed for a class of parametrically uncertain aeroelastic systems. A full-state robust adaptive controller was designed to suppress aeroelastic vibrations of a nonlinear wing section. The design used leading and trailing edge control actuations. The full state feedback (FSFB) control yielded a global uniformly ultimately bounded result for two-axis vibration suppression. The pitching and plunging displacements were measurable; however, the pitching and plunging rates were not measurable. Thus, a high gain observer was used to modify the FSFB control design to become an output feedback (OFB) design while the stability analysis for the OFB control law was presented. Simulation results demonstrate the efficacy of the multi-input multi-output control toward suppressing aeroelastic vibrations and limit cycle oscillations occurring in pre- and post-flutter velocity regimes.

블록 역행렬 기법에 의한 다중입출력 양변위 되먹임제어기의 설계 (Design of Multi-Input Multi-Output Positive Position feedback Controller based on Block-Inverse Technique)

  • 곽문규
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 춘계학술대회논문집
    • /
    • pp.508-514
    • /
    • 2005
  • This paper is concerned with the active vibration control of a grid structure equipped with piezoceramic sensors and actuators. The grid structure is a replica of the solar panel commonly mounted on satellites, which contains complex natural mode shapes. The multi input and multi output positive position feedback controller is considered as an active vibration controller for the grid structure. A new concept, the block-inverse technique, is proposed to cope with more modes than the number of actuators and sensors. This study also deals with the stability and the spillover effect associated with the application of the multi-input multi-output positive position feedback controller based on the block inverse technique. It was found that the theories developed in this study are capable of predicting the control system characteristics and its performance. The new multi-input multi-output positive position feedback controller was applied to the test structure using a digital signal processor and its efficacy was verified by experiments..

  • PDF

블록 역행렬 기법에 의한 다중입출력 양변위 되먹임제어기의 설계 (Design of Multi-input Multi-output Positive Position Feedback Controller Based on Block-inverse Technique)

  • 곽문규
    • 한국소음진동공학회논문집
    • /
    • 제15권9호
    • /
    • pp.1037-1044
    • /
    • 2005
  • This paper is concerned with the active vibration control of a grid structure equipped with piezoceramic sensors and actuators. The grid structure is a replica of the solar panel commonly mounted on satellites, which contains complex natural mode shapes. The multi-input and multi-output positive position feedback controller is considered as an active vibration controller for the grid structure. A new concept, the block-inverse technique, is proposed to cope with more modes than the number of actuators and sensors. This study also deals with the stability and the spillover effect associated with the application of the multi-input multi-output positive position feedback controller based on the block-inverse technique. It was found that the theories developed in this study are capable of predicting the control system characteristics and its performance. The new multi-input multi-output positive position feedback controller was applied to the test structure using a digital signal processor and its efficacy was verified by experiments.

수정된 출력을 이용한 다기 전력 계통의 분살 입출력 되먹임 선형화 제어 (Decentralized Input-Output Feedback Linearizing Control for a Multi-Machine Power System using Output Modification)

  • 지황;윤태웅;김석균
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년 학술대회 논문집 정보 및 제어부문
    • /
    • pp.291-294
    • /
    • 2006
  • This paper presents a decentralized input-output feedback linearizing controller for a multi-machine power system. Firstly, the controller is designed using input-output feedback linearization for modified outputs. Then we present a guideline for selecting gains of the controller and parameters in the modified outputs. Simulations illustrate the effectiveness of the proposed control scheme and the selection guideline.

  • PDF

다중 MR 감쇠기의 효과적인 동시제어를 위한 제어알고리즘 개발 (Development of Control Algorithm for Effective Simultaneous Control of Multiple MR Dampers)

  • 김현수;강주원
    • 한국공간구조학회논문집
    • /
    • 제13권3호
    • /
    • pp.91-98
    • /
    • 2013
  • A multi-input single-output (MISO) semi-active control systems were studied by many researchers. For more improved vibration control performance, a structure requires more than one control device. In this paper, multi-input multi-output (MIMO) semi-active fuzzy controller has been proposed for vibration control of seismically excited small-scale buildings. The MIMO fuzzy controller was optimized by multi-objective genetic algorithm. For numerical simulation, five-story example building structure is used and two MR dampers are employed. For comparison purpose, a clipped-optimal control strategy based on acceleration feedback is employed for controlling MR dampers to reduce structural responses due to seismic loads. Numerical simulation results show that the MIMO fuzzy control algorithm can provide superior control performance to the clipped-optimal control algorithm.

다입력 다출력 비선형시스템에 대한 직접학습제어 (Direct Learning Control for a Class of Multi-Input Multi-Output Nonlinear Systems)

  • 안현식
    • 전자공학회논문지SC
    • /
    • 제40권2호
    • /
    • pp.19-25
    • /
    • 2003
  • 본 논문에서는 주어진 작업을 반복적으로 수행하는 다입력 다출력 비선형시스템에 대하여 시스템의 (벡터)상대차수 개념을 이용한 확장된 형태의 직접학습제어를 제안한다. 기존의 직접학습제어가 적용될 수 있는 시스템은 상대차수가 제한적인 시스템임을 보이고 고차의 상대차수를 갖는 시스템에 적용 가능한 제어 법칙을 제시한다. 이 제어법칙을 이용하여 다른 형태의 출력 궤적들에 대한 학습을 통하여 얻어진 제어입력들로부터 새로 주어진 원하는 출력 궤적에 대응하는 제어입력을 직접적으로 생성한다. 제안된 직접학습제어의 타당성 및 성능을 보이기 위하여 2축 스카라 로봇에 대한 궤적추종제어의 시뮬레이션 결과를 제시한다

Multi-Input Multi-Output Nonlinear Autopilot Design for Ship-to-Ship Missiles

  • Im Ki-Hong;Chwa Dong-Kyoung;Choi Jin-Young
    • International Journal of Control, Automation, and Systems
    • /
    • 제4권2호
    • /
    • pp.255-270
    • /
    • 2006
  • In this paper, a design method of nonlinear autopilot for ship-to-ship missiles is proposed. Ship-to-ship missiles have strongly coupled dynamics through roll, yaw, and pitch channel in comparison with general STT type missiles. Thus it becomes difficult to employ previous control design method directly since we should find three different solutions for each control fin deflection and should verify the stability for more complicated dynamics. In this study, we first propose a control loop structure for roll, yaw, and pitch autopilot which can determine the required angles of all three control fins. For yaw and pitch autopilot design, missile model is reduced to a minimum phase model by applying a singular perturbation like technique to the yaw and pitch dynamics. Based on this model, a multi-input multi-output (MIMO) nonlinear autopilot is designed. And the stability is analyzed considering roll influences on dynamic couplings of yaw and pitch channel as well as the aerodynamic couplings. Some additional issues on the autopilot implementation for these coupled missile dynamics are discussed. Lastly, 6-DOF (degree of freedom) numerical simulation results are presented to verify the proposed method.

Design of RCGA-based PID controller for two-input two-output system

  • Lee, Yun-Hyung;Kwon, Seok-Kyung;So, Myung-Ok
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제39권10호
    • /
    • pp.1031-1036
    • /
    • 2015
  • Proportional-integral-derivative (PID) controllers are widely used in industrial sites. Most tuning methods for PID controllers use an empirical and experimental approach; thus, the experience and intuition of a designer greatly affect the tuning of the controller. The representative methods include the closed-loop tuning method of Ziegler-Nichols (Z-N), the C-C tuning method, and the Internal Model Control tuning method. There has been considerable research on the tuning of PID controllers for single-input single-output systems but very little for multi-input multi-output systems. It is more difficult to design PID controllers for multi-input multi-output systems than for single-input single-output systems because there are interactive control loops that affect each other. This paper presents a tuning method for the PID controller for a two-input two-output system. The proposed method uses a real-coded genetic algorithm (RCGA) as an optimization tool, which optimizes the PID controller parameters for minimizing the given objective function. Three types of objective functions are selected for the RCGA, and each PID controller parameter is determined accordingly. The performance of the proposed method is compared with that of the Z-N method, and the validity of the proposed method is examined.

능동 진동제어를 위한 시스템 동정 (System Identification for Active Vibration control)

  • 송철기;황진권;최종호;이장무
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1994년도 추계학술대회 논문집
    • /
    • pp.397-401
    • /
    • 1994
  • This paper proposes an identification method for a thin plate where multiple actuators and sensors are bonded. Since a thin plate has small damping ratios of all modes, each mode can be identified seperately with a bandpass filter for each modal signal. With the bandpass filter and the characteristics of the plate, the Multi-Input Multi-Output (MIMO) model of the plate can be converted to several Multi-Input Single-Output(MISO) models of second order linear difference equations of the modes. Parameters for each mode are obtained by using the Least Square method. Form there MISO models, the MIMO model is obtained in the form of the state space. Experiments were performed for an all-clamped plate with two pairs of piezoelectric actuators and sensors. The outputs of the identified model and the experimental data match well.

  • PDF