• Title/Summary/Keyword: Multi-Image

Search Result 2,916, Processing Time 0.032 seconds

FPGA-Based Real-Time Multi-Scale Infrared Target Detection on Sky Background

  • Kim, Hun-Ki;Jang, Kyung-Hyun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.11
    • /
    • pp.31-38
    • /
    • 2016
  • In this paper, we propose multi-scale infrared target detection algorithm with varied filter size using integral image. Filter based target detection is widely used for small target detection, but it doesn't suit for large target detection depending on the filter size. When there are multi-scale targets on the sky background, detection filter with small filter size can not detect the whole shape of the large targe. In contrast, detection filter with large filter size doesn't suit for small target detection, but also it requires a large amount of processing time. The proposed algorithm integrates the filtering results of varied filter size for the detection of small and large targets. The proposed algorithm has good performance for both small and large target detection. Furthermore, the proposed algorithm requires a less processing time, since it use the integral image to make the mean images with different filter sizes for subtraction between the original image and the respective mean image. In addition, we propose the implementation of real-time embedded system using FPGA.

Optimization-based Image Watermarking Algorithm Using a Maximum-Likelihood Decoding Scheme in the Complex Wavelet Domain

  • Liu, Jinhua;Rao, Yunbo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.1
    • /
    • pp.452-472
    • /
    • 2019
  • Most existing wavelet-based multiplicative watermarking methods are affected by geometric attacks to a certain extent. A serious limitation of wavelet-based multiplicative watermarking is its sensitivity to rotation, scaling, and translation. In this study, we propose an image watermarking method by using dual-tree complex wavelet transform with a multi-objective optimization approach. We embed the watermark information into an image region with a high entropy value via a multiplicative strategy. The major contribution of this work is that the trade-off between imperceptibility and robustness is simply solved by using the multi-objective optimization approach, which applies the watermark error probability and an image quality metric to establish a multi-objective optimization function. In this manner, the optimal embedding factor obtained by solving the multi-objective function effectively controls watermark strength. For watermark decoding, we adopt a maximum likelihood decision criterion. Finally, we evaluate the performance of the proposed method by conducting simulations on benchmark test images. Experiment results demonstrate the imperceptibility of the proposed method and its robustness against various attacks, including additive white Gaussian noise, JPEG compression, scaling, rotation, and combined attacks.

Performance Evaluation of the Developed Diagnostic Multi-Leaf Collimator and Implementation of Fusion Image of X-ray Image and Infrared Thermography Image (개발한 진단용 다엽조리개 성능평가 및 X선영상과 적외선체열영상의 융합영상 구현)

  • Kwon, Soon-Mu;Shim, Jae-Goo;Chon, Kwon-Su
    • Journal of radiological science and technology
    • /
    • v.42 no.5
    • /
    • pp.365-371
    • /
    • 2019
  • We have developed and applied a diagnostic Multi-Leaf Collimator (MLC) to optimized the X-ray field in medical imaging and the usefulness evaluated through the fusion of infrared image and X-ray image acquired by infrared camera. The hand and skull radiography with multi-leaf collimator(MLC) showed significant area dose reductions of 22.9% and 31.3% compared to ARC and leakage dose was compliant with KS A 4732. Also scattering doses of 50 cm and 100 cm showed a significant decrease to confirm the usefulness of MLC. It was confirmed that the fusion of infrared images with an adjustable degree of transparency was possible in the X-ray images. Therefore, fusion of anatomical information with physiological convergence is expected to contribute and improvement of diagnostic ability. In addition, the feasibility of convergence X-ray imaging and DITI devices and the possibility of driving MLC with infrared images were confirmed.

Refinements of Multi-sensor based 3D Reconstruction using a Multi-sensor Fusion Disparity Map (다중센서 융합 상이 지도를 통한 다중센서 기반 3차원 복원 결과 개선)

  • Kim, Si-Jong;An, Kwang-Ho;Sung, Chang-Hun;Chung, Myung-Jin
    • The Journal of Korea Robotics Society
    • /
    • v.4 no.4
    • /
    • pp.298-304
    • /
    • 2009
  • This paper describes an algorithm that improves 3D reconstruction result using a multi-sensor fusion disparity map. We can project LRF (Laser Range Finder) 3D points onto image pixel coordinatesusing extrinsic calibration matrixes of a camera-LRF (${\Phi}$, ${\Delta}$) and a camera calibration matrix (K). The LRF disparity map can be generated by interpolating projected LRF points. In the stereo reconstruction, we can compensate invalid points caused by repeated pattern and textureless region using the LRF disparity map. The result disparity map of compensation process is the multi-sensor fusion disparity map. We can refine the multi-sensor 3D reconstruction based on stereo vision and LRF using the multi-sensor fusion disparity map. The refinement algorithm of multi-sensor based 3D reconstruction is specified in four subsections dealing with virtual LRF stereo image generation, LRF disparity map generation, multi-sensor fusion disparity map generation, and 3D reconstruction process. It has been tested by synchronized stereo image pair and LRF 3D scan data.

  • PDF

Multi Cycle Consistent Adversarial Networks for Multi Attribute Image to Image Translation

  • Jo, Seok Hee;Cho, Kyu Cheol
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.9
    • /
    • pp.63-69
    • /
    • 2020
  • Image-image translation is a technology that creates a target image through input images, and has recently shown high performance in creating a more realistic image by utilizing GAN, which is a non-map learning structure. Therefore, there are various studies on image-to-image translation using GAN. At this point, most image-to-image translations basically target one attribute translation. But the data used and obtainable in real life consist of a variety of features that are hard to explain with one feature. Therefore, if you aim to change multiple attributes that can divide the image creation process by attributes to take advantage of the various attributes, you will be able to play a better role in image-to-image translation. In this paper, we propose Multi CycleGAN, a dual attribute transformation structure, by utilizing CycleGAN, which showed high performance among image-image translation structures using GAN. This structure implements a dual transformation structure in which three domains conduct two-way learning to learn about the two properties of an input domain. Experiments have shown that images through the new structure maintain the properties of the input area and show high performance with the target properties applied. Using this structure, it is possible to create more diverse images in the future, so we can expect to utilize image generation in more diverse areas.

No-reference Image Blur Assessment Based on Multi-scale Spatial Local Features

  • Sun, Chenchen;Cui, Ziguan;Gan, Zongliang;Liu, Feng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.10
    • /
    • pp.4060-4079
    • /
    • 2020
  • Blur is an important type of image distortion. How to evaluate the quality of blurred image accurately and efficiently is a research hotspot in the field of image processing in recent years. Inspired by the multi-scale perceptual characteristics of the human visual system (HVS), this paper presents a no-reference image blur/sharpness assessment method based on multi-scale local features in the spatial domain. First, considering various content has different sensitivity to blur distortion, the image is divided into smooth, edge, and texture regions in blocks. Then, the Gaussian scale space of the image is constructed, and the categorized contrast features between the original image and the Gaussian scale space images are calculated to express the blur degree of different image contents. To simulate the impact of viewing distance on blur distortion, the distribution characteristics of local maximum gradient of multi-resolution images were also calculated in the spatial domain. Finally, the image blur assessment model is obtained by fusing all features and learning the mapping from features to quality scores by support vector regression (SVR). Performance of the proposed method is evaluated on four synthetically blurred databases and one real blurred database. The experimental results demonstrate that our method can produce quality scores more consistent with subjective evaluations than other methods, especially for real burred images.

Design and Implementation of Multi-View 3D Video Player (다시점 3차원 비디오 재생 시스템 설계 및 구현)

  • Heo, Young-Su;Park, Gwang-Hoon
    • Journal of Broadcast Engineering
    • /
    • v.16 no.2
    • /
    • pp.258-273
    • /
    • 2011
  • This paper designs and implements a multi-view 3D video player system which is operated faster than existing video player systems. The structure for obtaining the near optimum speed in a multi-processor environment by parallelizing the component modules is proposed to process large volumes of multi-view image data at high speed. In order to use the concurrency of bottleneck, we designed image decoding, synthesis and rendering modules in a pipeline structure. For load balancing, the decoder module is divided into the unit of viewpoint, and the image synthesis module is geometrically divided based on synthesized images. As a result of this experiment, multi-view images were correctly synthesized and the 3D sense could be felt when watching the images on the multi-view autostereoscopic display. The proposed application processing structure could be used to process large volumes of multi-view image data at high speed, using the multi-processors to their maximum capacity.

Comparative Analysis of Land-use thematic GIS layers and Multi-resolution Image Classification Results by using LANDSAT 7 ETM+ and KOMPSAT EOC image (Landsat 7 ETM+와 KOMPSAT EOC 영상 자료를 이용한 다중 분해능 영상 분류결과와 토지이용현황 주제도 대비 분석)

  • 이기원;유영철;송무영;사공호상
    • Spatial Information Research
    • /
    • v.10 no.2
    • /
    • pp.331-343
    • /
    • 2002
  • Recently, as various fields of applications using space-borne imagery have been emphasized, interests on integrated analysis or fusion using multi-sources are also increasing. In this study, to investigate applicability of multiple imageries for further regional-scaled application, DN value analysis and multi-resolution classification by using KOMPSAT EOC imagery and Landsat 7 ETM+image data in the Namyangju-city area were performed, and then this classified results were compared to land-use thematic data at the same area. In case of classified results by using muff-resolution image data, it is shown that linear-type features can be easily extracted. furthermore, it is expected that multi-resolution classified image can be effectively utilized to urban environment analysis, according to results of similar pattern by comparative study based on multi-buffered zone analysis or so-called distance analysis along main road features in the study area.

Optical security system using multi-phase separation and phase-wrapping method (다중 위상 분할과 위상 랩핑 방법을 이용한 광 암호화 시스템)

  • Shin Chang Mok;Kim Soo Joong;Seo Dong Hoan
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.42 no.6 s.336
    • /
    • pp.31-38
    • /
    • 2005
  • In this paper, we proposed an optical security system based on a gray-image exclusive-OR encryption using multi-phase separation and phase-wrapping method. For encryption, a gray image is sliced into binary images, which have the same pixel value, and these images are encrypted by modified XOR rules with binary random images. The XORed images and the binary images respectively combined and converted into full phase images, called an encrypted image and a key image. For decryption, when the encrypted image and key image are used as inputs on optical elements, Practically due to limited controllability of phase range in optical elements, the original gray image cannot be efficiently reconstructed by these optical elements. Therefore, by decreasing the phase ranges of the encrypted image and key image using a phase-wrapping method and separating these images into low-level phase images using multi-phase separation, the gray image can be reconstructed by optical elements which have limited control range. The decrytion process is simply implemented by interfering a multiplication result of encrypted image and key image with reference light. The validity of proposed scheme is verified and the effects, which are caused by phase limitation in decryption process, is analyzed by using computer simulations.

Embedded Zero-tree Wavelet (EZW) Image Compression Using Multi-Threshold (다중 임계값을 이용한 임베디드 제로트리 웨이블렛(EZW) 영상압축)

  • 방민기;조창호;이상효;박종우;이종용
    • Proceedings of the IEEK Conference
    • /
    • 2003.07e
    • /
    • pp.2311-2314
    • /
    • 2003
  • In this paper, the embedded zero-tree wavelet image compression method using multi- threshold is proposed, which can reduce the scanning and symbol redundancy of the existing embedded zero-tree wavelet (EZW) method and enable more efficient coding. In the proposed scheme, a multi-threshold is constructed with the maximum absolute values from each subband decomposed by the wavelet transforms of the input image data. The multi-threshold values are compared with the threshold value T$_1$ in each pass in Successive Approximation Quantization (SAQ) to select the significant subbands, which are only used for the subsequent coding processes, therefore, can reduce the coding redundancy in the existing EZW. By the experimental results, it is verified that the proposed multi-threshold EZW method shows superior performances to the existing EZW method.

  • PDF