• Title/Summary/Keyword: Multi-Hazard

Search Result 214, Processing Time 0.024 seconds

TMD-Based Adaptive Smart Structural Control System for Multi-Hazard (TMD 기반 적응형 스마트 구조제어시스템의 멀티해저드 적응성 평가)

  • Kim, Hyun-Su
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.7
    • /
    • pp.720-725
    • /
    • 2017
  • This paper evaluated the safety and serviceability of a building structure considering the multi-hazard and proposed TMD-based adaptive smart control system to improve the structural performance. To make multi-hazard loads, an artificial earthquake and artificial wind loads were generated based on representative regions of strong seismicity and strong wind in U.S.A. The safety and serviceability of a 20-story example building structure were investigated using the generated artificial loads. A smart TMD was employed to improve the safety and serviceability of the example structure and its capacity of structural performance improvement was evaluated. The smart TMD was comprised of a MR (magnetorheological) damper. Numerical analysis showed that the example building structure could not satisfy the design limit of safety and serviceability with respect to multi-hazard. The smart TMD effectively reduced the seismic responses associated with the safety and wind-induce responses associated with serviceability.

Development of Multi-hazard Fragility Surface for Liquefaction of Levee Considering Earthquake Magnitude and Water Level (수위와 지진을 고려한 제방의 액상화에 대한 복합재해 취약도 곡면 작성)

  • Hwang, Ji-Min;Cho, Sung-Eun
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.6
    • /
    • pp.25-36
    • /
    • 2018
  • Soil liquefaction is one of the types of major seismic damage. Soil liquefaction is a phenomenon that can cause enormous human and economic damages, and it must be examined before designing geotechnical structures. In this study, we proposed a practical method of developing a multi-hazard fragility surface for liquefaction of levee considering earthquake magnitude and water level. Limit state for liquefaction of levee was defined by liquefaction potential index (LPI), which is frequently used to assess the liquefaction susceptibility of soils. In order to consider the uncertainty of soil properties, Monte Carlo Simulation based probabilistic analysis was performed. Based on the analysis results, a 3D fragility surface representing the probability of failure by soil liquefaction as a function of the ground motion and water level has been established. The prepared multi-hazard fragility surface can be used to evaluate the safety of levees against liquefaction and to assess the risk in earthquake and flood prone areas.

Hazard Prevention using Multi-Level Debris Flow Barriers (다단식(다단식) 토석류 방호책을 이용한 재해방지 시스템)

  • Lee, Sung-Uk;Choi, Seung-Il;Choi, Yu-Kyung
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.815-829
    • /
    • 2008
  • Debris flows are a natural hazard which looks like a combination of flood, land and rock slide. Large rainfall in July 2006 produced several large scale debris flows and many small debris flows that resulted in loss of life and considerable property and railway damage, as was widely reported in the national media. The hazard "debris flow" is still insufficiently researched. Furthermore debris flows are very hard to predict. Flexible Ring net barriers are multi-functional mitigation devices commonly applied to rock fall or floating wood protection in floods, snow avalanches and also mud flows or granular debris flows, if properly dimensioned for the process or processes for which they are intended. Overtopping of the barriers by debris flows and sediment transport is possible, supporting the design concept that a series of barriers may be used to stop volumes of debris larger than are possible using only one barrier. The future for these barrier concepts looks promising because these barriers represent the state of art for such applications and are superior to many other available options.

  • PDF

A Study on the Development of Korean Inventory for the Multi-Hazard Risk Assessment -Based on Earthquake Damage Analysis (복합재난 손실 평가를 위한 한국형 인벤토리 구축 방안 연구 -지진재해 손실 평가를 중심으로)

  • Chai, Su-Seong;Shin, Su-mi;Suh, Dongjun
    • Journal of Digital Contents Society
    • /
    • v.18 no.6
    • /
    • pp.1127-1134
    • /
    • 2017
  • The main goal of this study is to develop the system of multi-hazard risk assessment tools based on major inventories and functions. As a first step, designing and building a Korean inventory of the loss assessment was performed due to earthquake disasters. We focused on the special features, taking account of the possibly conflicting features of the various conditions such as different type of formats, environmental differences, and collected data relevant to the use of proposed risk assessment system in terms of constructing the Korean inventory including buildings and population.

Seismic Fragility Assessment of NPP Containment Structure based on Conditional Mean Spectra for Multiple Earthquake Scenarios (다중 지진 시나리오를 고려한 원전 격납구조물의 조건부 평균 스펙트럼 기반 지진취약도 평가)

  • Park, Won Ho;Park, Ji-Hun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.23 no.6
    • /
    • pp.301-309
    • /
    • 2019
  • A methodology to assess seismic fragility of a nuclear power plant (NPP) using a conditional mean spectrum is proposed as an alternative to using a uniform hazard response spectrum. Rather than the single-scenario conditional mean spectrum, which is the conventional conditional mean spectrum based on a single scenario, a multi-scenario conditional mean spectrum is proposed for the case in which no single scenario is dominant. The multi-scenario conditional mean spectrum is defined as the weighted average of different conditional mean spectra, each one of which corresponds to an individual scenario. The weighting factors for scenarios are obtained from a deaggregation of seismic hazards. As a validation example, a seismic fragility assessment of an NPP containment structure is performed using a uniform hazard response spectrum and different single-scenario conditional mean spectra and multi-scenario conditional mean spectra. In the example, the number of scenarios primarily influences the median capacity of the evaluated structure. Meanwhile, the control frequency, a key parameter of a conditional mean spectrum, plays an important role in reducing logarithmic standard deviation of the corresponding fragility curves and corresponding high confidence of low probability of failure (HCLPF) capacity.

Techniques for Hazard Analysis of Curved Road Based on USN (굴곡 도로를 위한 USN 기반 위험 분석 기술)

  • Ko, Ik-June;Oh, Byoung-Woo
    • Spatial Information Research
    • /
    • v.17 no.1
    • /
    • pp.25-37
    • /
    • 2009
  • In this paper, we propose techniques for hazard analysis of curved road based on USN. The techniques consist of models and algorithms. Models of curved road, road direction, sensor, vehicle and hazard are proposed. To analyze hazard in curved road and give warning to corresponding vehicle in realtime multi-level algorithms are proposed. An application program implements the models and algorithms to simulate proposed techniques with real-time visualization.

  • PDF

Performance assessment of multi-hazard resistance of Smart Outrigger Damper System (스마트 아웃리거 댐퍼시스템의 멀티해저드 저항성능평가)

  • Kim, Hyun-Su
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.5
    • /
    • pp.139-145
    • /
    • 2018
  • An outrigger system is used widely to increase the lateral stiffness of high-rise buildings, resulting in reduced dynamic responses to seismic or wind loads. Because the dynamic characteristics of earthquake or wind loads are quite different, a smart vibration control system associated with an outrigger system can be used effectively for both seismic and wind excitation. In this study, an adaptive smart structural control system based on an outrigger damper system was investigated for the response reduction of multi-hazards, including seismic and wind loads. A MR damper was employed to develop the smart outrigger damper system. Three cities in the U.S., L.A., Charleston, and Anchorage, were used to generate multi-hazard earthquake and wind loads. Parametric studies on the MR damper capacity were performed to investigate the optimal design of the smart outrigger damper system. A smart control algorithm was developed using a fuzzy controller optimized by a genetic algorithm. The analytical results showed that an adaptive smart structural control system based on an outrigger damper system can provide good control performance for multi-hazards of earthquake and wind loads.

Assessing Markov and Time Homogeneity Assumptions in Multi-state Models: Application in Patients with Gastric Cancer Undergoing Surgery in the Iran Cancer Institute

  • Zare, Ali;Mahmoodi, Mahmood;Mohammad, Kazem;Zeraati, Hojjat;Hosseini, Mostafa;Naieni, Kourosh Holakouie
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.1
    • /
    • pp.441-447
    • /
    • 2014
  • Background: Multi-state models are appropriate for cancer studies such as gastrectomy which have high mortality statistics. These models can be used to better describe the natural disease process. But reaching that goal requires making assumptions like Markov and homogeneity with time. The present study aims to investigate these hypotheses. Materials and Methods: Data from 330 patients with gastric cancer undergoing surgery at Iran Cancer Institute from 1995 to 1999 were analyzed. To assess Markov assumption and time homogeneity in modeling transition rates among states of multi-state model, Cox-Snell residuals, Akaikie information criteria and Schoenfeld residuals were used, respectively. Results: The assessment of Markov assumption based on Cox-Snell residuals and Akaikie information criterion showed that Markov assumption was not held just for transition rate of relapse (state 1 ${\rightarrow}$ state 2) and for other transition rates - death hazard without relapse (state 1 ${\rightarrow}$ state 3) and death hazard with relapse (state 2 ${\rightarrow}$ state 3) - this assumption could also be made. Moreover, the assessment of time homogeneity assumption based on Schoenfeld residuals revealed that this assumption - regarding the general test and each of the variables in the model- was held just for relapse (state 1 ${\rightarrow}$ state 2) and death hazard with a relapse (state 2 ${\rightarrow}$ state 3). Conclusions: Most researchers take account of assumptions such as Markov and time homogeneity in modeling transition rates. These assumptions can make the multi-state model simpler but if these assumptions are not made, they will lead to incorrect inferences and improper fitting.

Assessment of Ductility and Plastic Hinge Region of Reinforced Concrete Multi-Column Bent (2주형 다주교각의 연성도 및 소성힌지 영역에 관한 연구)

  • Byun, Soon-Joo;Im, Jung-Soon
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.6 no.3 s.22
    • /
    • pp.37-45
    • /
    • 2006
  • In this study, displacement ductility capacity and plastic hinge regions of reinforced concrete multi-column bent with different transverse reinforcement ratio are investigated. The ductility increases remarkably as transverse reinforcement ratio increase and the multi-column bent loaded along transverse direction is more ductile. The plastic hinge length for special detailing requirements of transverse reinforcement is estimated. For high target ductility, plastic hinge length for confinement should be extended with increased transverse reinforcement ratio. The plastic hinge length of multi-column bent loaded along transverse direction is shorter than that along longitudinal direction, because of the different moment distribution.

Land Cover Classification of Multi-functional Administrative City for Hazard Mitigation Precaution (행정중심복합도시 재해경감대책을 위한 토지피복분류)

  • Han, Seung-Hee
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.5
    • /
    • pp.77-83
    • /
    • 2008
  • In this study, land cover classification and NDVI evaluation for hazard mitigation precaution are carried out in surrounding areas of Yeongi-gun, Chungcheongnam-do ($132\;km^2$) where a project for multi-functional administrative city is promoted by government. Image acquired from KOMPSAT 2, LANDSAT and ASTER is utilized and comparative evaluation on limitation in classification based on resolution was carried out. The area mainly consists of arable land including mountains, rice fields, ordinary fields, etc thus special attention was paid to the classification of rice fields and ordinary fields. For the classification of image acquired from KOMPSAT 2, segmentation technique for classification of high-resolution image was applied. To evaluate the accuracy of the classification, field investigation was conducted to examine the sample and it was compared with the land usage and classification of land category in land ledger of Korea. Acquired results were made into theme map in shape file format and it would be of great help in decision making of policy for the future-oriented development plan of multi-functional administrative city.