• Title/Summary/Keyword: Multi-Electrode

Search Result 413, Processing Time 0.03 seconds

Topology Optimization for End Plate of Fuel Cell Stack (연료전지스택 바깥판의 위상최적설계)

  • Choi, Woo-Seok;Oh, Sung-Jin;Kim, Sung-Jong;Hong, Byung-Sun
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.456-461
    • /
    • 2003
  • A fuel cell is an electrochemical device in which the energy of a chemical reaction is converted directly into electricity. By combining hydrogen fuel with oxygen from air, electricity is formed, without combustion of any form. Water and heat are the only by-products when hydrogen is used as the fuel source. Fuel cell stack consists of multi-layered unit cells. A unit cell consists of MEA and bipolar plates. The end plate of fuel cell stack should give a uniform distributed pressure to multi unit cell layers so as to reduce the contact resistance and to prevent the leakage of reactant gases and the damage of multi layer components. The current end plate is redundantly large and heavy. It makes the power per unit volume reduced. Topology optimization of end plate is conducted for mass reduction and enhancement of bending rigidity. The evaluation of the current design and the recommendation for the future design is remarked.

  • PDF

A Fetal ECG Signal Monitoring System Using Digital Signal Processor (디지털 신호처리기를 사용한 태아심전도 신호 추출 시스템)

  • 박영철;조병모;김남현;김원기;박상휘;연대희
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.26 no.9
    • /
    • pp.1444-1452
    • /
    • 1989
  • This paper describes the implementation of a real time fetal ECG monitoring system in which an adaptive multi-channel noise canceller is realized using the Texas Instruments TMS32020 progrmmmable ditital signal processor. An ECG signal from the electrode placed on the mother's abdomen and three ECGs from those on the chest are applied as the desired signal and the referened inputs, respectively, of the multi-channel filter. The coefficients of the filter are updated using the LMS algorithm such that the output of the multi-channel filter copies the maternal ECG embedded in the abdominal ECG. The enhanced fetal ECG is obtained by subtracting the filter output from the abdominal ECG, and the difference signal is recorded. Both off-line and on-line experimental results are presented to verify the effectiveness of the parameters for the digital signal processing algorithms and the prototype system.

  • PDF

Fabrication of a Resonator using suspended Multi-wall Carbon Nanotubes (다중벽 탄소나노튜브를 이용한 공진기 제작)

  • Lee J.H.;Seo H.W.;Song J.W.;Han C.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.465-466
    • /
    • 2006
  • A single-wall carbon nanotube (SWCNT) has been studied as a material of Nano-Eletro-Mechanical-System (NEMS) device together with various nanowires. In order for oscillation of a multi-wall carbon nanotube (MWCNT) or a single-walled carbon nanotube (SWCNT) on plane surface, it needs suspension of a CNT across trench electrodes. So we propose fabrication method of a MWCNT resonator using dielectrophoresis and show successful results of suspeneded MWNT. Thin electrodes with large gaps could not suspend small diameter MWNT but thicker electrodes could. Thin MWNT could be suspended only when the electrode gap was reduced.

  • PDF

Development History and Trend of High-Capacitance Multi-layer Ceramic Capacitor in Korea (우리나라 고용량 MLCC 기술 개발의 역사와 전망)

  • Hong, Jeong-Oh;Kim, Sang-Hyuk;Hur, Kang-Heon
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.2
    • /
    • pp.161-169
    • /
    • 2009
  • MLCC (Multi-layer Ceramic Capacitor) is the most important passive component in electronic devices such as HHP, PC and digital display. The development trend of MLCC is a miniaturization with increasing the capacitance. In this paper, a development history of the high capacitance MLCC in Korea was introduced, and the necessity of the finer $BaTiO_3$ was explained in the viewpoint of the issued electrical and dielectric properties of high capacitance MLCC. The bottleneck technologies to realize the high capacitance was shortly introduced, followed by the prediction of the development trend of MLCC in near future.

Development of Metal Substrate with Multi-Stage Nano-Hole Array for Low Temperature Solid Oxide Fuel Cell (저온 고체산화물연료전지 구현을 위한 다층 나노기공성 금속기판의 제조)

  • Kang, Sangkyun;Park, Yong-Il
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.12 s.283
    • /
    • pp.865-871
    • /
    • 2005
  • Submicron thick solid electrolyte membrane is essential to the implementation of low temperature solid oxide fuel cell, and, therefore, development of new electrode structures is necessary for the submicron thick solid electrolyte deposition while providing functions as current collector and fuel transport channel. In this research, a nickel membrane with multi-stage nano hole array has been produced via modified two step replication process. The obtained membrane has practical size of 12mm diameter and $50{\mu}m$ thickness. The multi-stage nature provides 20nm pores on one side and 200nm on the other side. The 20nm side provides catalyst layer and $30\~40\%$ planar porosity was measured. The successful deposition of submicron thick yttria stabilized zirconia membrane on the substrate shows the possibility of achieving a low temperature solid oxide fuel cell.

Performance of multi-cell stack for direct methanol fuel cells (직접메탄올 연료전지용 다층스택의 성능특성)

  • Lee, Chang-Hyeong;Jung, Doo-Hwan;Kim, Chang-Soo;Shin, Dong-Ryul
    • Proceedings of the KIEE Conference
    • /
    • 1999.07d
    • /
    • pp.1870-1872
    • /
    • 1999
  • Performance of 20-cell stack for direct methanol fuel cell (DMFC) was tested at constant temperature. Electrode evaluation used to the stack was tested by the performance of a single cell. A new composite electrode prepared from active carbon cloth and high porous active carbon was developed for hydrophilic layer of the cell. Characteristics of a single cell using the composite electrode showed the current density of $500mA/cm^2$ at the cell voltage of 0.4V at $120^{\circ}C$. For the operating of 20 days. the cell voltage at constant cell current densty of $100mA/cm^2$ was slightly reduced from 0.62V to 0.53V with the cell voltage decay rate of 14.5%. Power of 20-cell stack at 5.3V, $100^{\circ}C$ was about 180W.

  • PDF

Surface Modification of Multi-walled Carbon Nanotubes for Enhancement of Dispersion and Electrochemical Properties

  • Kim, Young-Ja;Zhang, Wentao;Lee, Hong-Ro;Kim, Jong-Hyee
    • Journal of the Korean institute of surface engineering
    • /
    • v.41 no.5
    • /
    • pp.194-198
    • /
    • 2008
  • Several methods for improving dispersion of carbon nanotubes (CNTs) have been investigated. CNTs modified by acids and hydrogen peroxide ($H_2O_2$) showed improved dispersion. From SEM micrographs and photos of dispersion, CNTs modified with nitric acid and $H_2O_2$, showed no agglomeration in solution even standing for 4 months, which means successfully improved dispersion property. TEM micrographs of surface modified single CNT treated with 69% $HNO_3$ in boiling acid solution as the optimum method were obtained. For confirmation of CNTs' application to EDLC electrode materials, characteristics of EDLC have been analyzed by cyclic voltammetry curve, specific capacitance of unit cell, electrode discharge curves and AC impedance curve. From the results, it could be confirmed that electrochemical properties of CNTs were enhanced after surface modification with 69% $HNO_3$ acid treatment.

Characteristics of the Multi-kW Class Polymer Electrolyte Membrane Fuel Cell Stack for a Hybrid Electric Golf Cart

  • I.H. Oh;S.J. Shin;J.H. Jo;Park, S.K.;H.Y. Ha;S.A. Hong;S.Y. Ahn;Lee, Y.C.;S.A. Cho
    • Journal of Energy Engineering
    • /
    • v.11 no.3
    • /
    • pp.254-261
    • /
    • 2002
  • The fabrication method for the main components of the polymer electrolyte membrane fuel cell stack such as electrodes, membrane-electrode assemblies, and bipolar plates was established for the effective electrode area of 240 ㎠. A counter-flow type 100-cell stack was fabricated by using the above components and then a maximum power of 7.44 kW for H$_2$/O$_2$ and 5.56 kW for H$_2$/air could be obtained at 70$\^{C}$ and 1 atm. It was seen that the distribution of the OCV for unit cells in the stack was uniform but the voltage deviation increased as the load increased due to the IR drop and the electrode polarization. The stack was applied to the power source of the fuel cell/battery hybrid electric golf car. It produced about 1 kW at a room temperature operation during the test run, which occupied about 43% of the total power required by the 2.3 kW motor.

Vibration Control of Beam using Distributed PVDF sensor and PZT actuator (분포형 압전 필름 감지기와 압전 세라믹 작동기를 이용한 보의 진동 제어)

  • 박근영;유정규;김승조
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.413-417
    • /
    • 1997
  • Distributed piezoelectric sensor and actuator have been designed for efficient vibration control of a cantilevered beam. Both PZT and PVDF are used in this study, the former as an actuator and the latter as a sensor for our integrated structure. For the PZT actuator, the position and size have been optimized. Optimal electrode shape of the PVDF sensor has been determined. For multi-mode vibration control, we have used two PZT actuators and a PVDF sensor. Electrode shading of PVDF is more powerful for modal force adjustment than the sizing and positioning of PZT. Finite element method is used to model the structure that includes the PZT actuator and the PVDF sensor. By deciding on or off of each PZT segment, the length and the location of the PZT actuator are optimize. Considering both of the host structure and the optimized actuators, it is designed that the active electrode width of PVDF sensor along the span of the beam. Actuator design is based on the criterion of minimizing the system energy in the control modes under a given initial condition. Sensor is designed to minimize the observation spill-over. Modal control forces for the residual(uncontrolled) modes have been minimized during the sensor design. Genetic algorithm, which is suitable for this kind of discrete problems, has been utilized for optimization. Discrete LQG control law has been applied to the integrated structure for real time vibration control. Performance of the sensor, the actuator, and the integrated smart structure has been demonstrated by experiments.

  • PDF

Numerical Study About Compression Effect of Porous Electrodes on the Performance of Redox Flow Batteries (다공성 전극의 압축률이 레독스흐름전지의 성능에 미치는 영향에 대한 수치해석적 연구)

  • Jeong, Daein;Jung, Seunghun
    • Journal of ILASS-Korea
    • /
    • v.22 no.2
    • /
    • pp.69-79
    • /
    • 2017
  • When designing a redox flow battery system, compression of battery stack is required to prevent leakage of electrolyte and to reduce contact resistance between cell components. In addition, stack compression leads to deformation of the porous carbon electrode, which results in lower porosity and smaller cross-sectional area for electrolyte flow. In this paper, we investigate the effects of electrode compression on the cell performance by applying multi-dimensional, transient model of all-vanadium redox flow battery (VRFB). Simulation result reveals that large compression leads to greater pressure drop throughout the electrodes, which requires large pumping power to circulate electrolyte while lowered ohmic resistance results in better power capability of the battery. Also, cell compression results in imbalance between anolyte and catholyte and convective crossover of vanadium ions through the separator due to large pressure difference between negative and positive electrodes. Although it is predicted that the battery power is quickly improved due to the reduced ohmic resistance, the capacity decay of the battery is accelerated in the long term operation when the battery cell is compressed. Therefore, it is important to optimize the battery performance by taking trade-off between power and capacity when designing VRFB system.