• Title/Summary/Keyword: Multi-Document Summarization

Search Result 19, Processing Time 0.027 seconds

An Experimental Study on Multi-Document Summarization for Question Answering (질의응답을 위한 복수문서 요약에 관한 실험적 연구)

  • Choi, Sang-Hee;Chung, Young-Mee
    • Journal of the Korean Society for information Management
    • /
    • v.21 no.3
    • /
    • pp.289-303
    • /
    • 2004
  • This experimental study proposes a multi-document summarization method that produces optimal summaries in which users can find answers to their queries. In order to identify the most effective method for this purpose, the performance of the three summarization methods were compared. The investigated methods are sentence clustering, passage extraction through spreading activation, and clustering-passage extraction hybrid methods. The effectiveness of each summarizing method was evaluated by two criteria used to measure the accuracy and the redundancy of a summary. The passage extraction method using the sequential bnb search algorithm proved to be most effective in summarizing multiple documents with regard to summarization precision. This study proposes the passage extraction method as the optimal multi-document summarization method.

Multi-document Summarization Based on Cluster using Term Co-occurrence (단어의 공기정보를 이용한 클러스터 기반 다중문서 요약)

  • Lee, Il-Joo;Kim, Min-Koo
    • Journal of KIISE:Software and Applications
    • /
    • v.33 no.2
    • /
    • pp.243-251
    • /
    • 2006
  • In multi-document summarization by means of salient sentence extraction, it is important to remove redundant information. In the removal process, the similarities and differences of sentences are considered. In this paper, we propose a method for multi-document summarization which extracts salient sentences without having redundant sentences by way of cohesive term clustering method that utilizes co-occurrence Information. In the cohesive term clustering method, we assume that each term does not exist independently, but rather it is related to each other in meanings. To find the relations between terms, we cluster sentences according to topics and use the co-occurrence information oi terms in the same topic. We conduct experimental tests with the DUC(Document Understanding Conferences) data. In the tests, our method shows better performance of summarization than other summarization methods which use term co-occurrence information based on term cohesion of document or sentence unit, and simple statistical information.

Automatic Single Document Text Summarization Using Key Concepts in Documents

  • Sarkar, Kamal
    • Journal of Information Processing Systems
    • /
    • v.9 no.4
    • /
    • pp.602-620
    • /
    • 2013
  • Many previous research studies on extractive text summarization consider a subset of words in a document as keywords and use a sentence ranking function that ranks sentences based on their similarities with the list of extracted keywords. But the use of key concepts in automatic text summarization task has received less attention in literature on summarization. The proposed work uses key concepts identified from a document for creating a summary of the document. We view single-word or multi-word keyphrases of a document as the important concepts that a document elaborates on. Our work is based on the hypothesis that an extract is an elaboration of the important concepts to some permissible extent and it is controlled by the given summary length restriction. In other words, our method of text summarization chooses a subset of sentences from a document that maximizes the important concepts in the final summary. To allow diverse information in the summary, for each important concept, we select one sentence that is the best possible elaboration of the concept. Accordingly, the most important concept will contribute first to the summary, then to the second best concept, and so on. To prove the effectiveness of our proposed summarization method, we have compared it to some state-of-the art summarization systems and the results show that the proposed method outperforms the existing systems to which it is compared.

PMCN: Combining PDF-modified Similarity and Complex Network in Multi-document Summarization

  • Tu, Yi-Ning;Hsu, Wei-Tse
    • International Journal of Knowledge Content Development & Technology
    • /
    • v.9 no.3
    • /
    • pp.23-41
    • /
    • 2019
  • This study combines the concept of degree centrality in complex network with the Term Frequency $^*$ Proportional Document Frequency ($TF^*PDF$) algorithm; the combined method, called PMCN (PDF-Modified similarity and Complex Network), constructs relationship networks among sentences for writing news summaries. The PMCN method is a multi-document summarization extension of the ideas of Bun and Ishizuka (2002), who first published the $TF^*PDF$ algorithm for detecting hot topics. In their $TF^*PDF$ algorithm, Bun and Ishizuka defined the publisher of a news item as its channel. If the PDF weight of a term is higher than the weights of other terms, then the term is hotter than the other terms. However, this study attempts to develop summaries for news items. Because the $TF^*PDF$ algorithm summarizes daily news, PMCN replaces the concept of "channel" with "the date of the news event", and uses the resulting chronicle ordering for a multi-document summarization algorithm, of which the F-measure scores were 0.042 and 0.051 higher than LexRank for the famous d30001t and d30003t tasks, respectively.

Topic-based Multi-document Summarization Using Non-negative Matrix Factorization and K-means (비음수 행렬 분해와 K-means를 이용한 주제기반의 다중문서요약)

  • Park, Sun;Lee, Ju-Hong
    • Journal of KIISE:Software and Applications
    • /
    • v.35 no.4
    • /
    • pp.255-264
    • /
    • 2008
  • This paper proposes a novel method using K-means and Non-negative matrix factorization (NMF) for topic -based multi-document summarization. NMF decomposes weighted term by sentence matrix into two sparse non-negative matrices: semantic feature matrix and semantic variable matrix. Obtained semantic features are comprehensible intuitively. Weighted similarity between topic and semantic features can prevent meaningless sentences that are similar to a topic from being selected. K-means clustering removes noises from sentences so that biased semantics of documents are not reflected to summaries. Besides, coherence of document summaries can be enhanced by arranging selected sentences in the order of their ranks. The experimental results show that the proposed method achieves better performance than other methods.

Multi-Document Summarization Method Based on Semantic Relationship using VAE (VAE를 이용한 의미적 연결 관계 기반 다중 문서 요약 기법)

  • Baek, Su-Jin
    • Journal of Digital Convergence
    • /
    • v.15 no.12
    • /
    • pp.341-347
    • /
    • 2017
  • As the amount of document data increases, the user needs summarized information to understand the document. However, existing document summary research methods rely on overly simple statistics, so there is insufficient research on multiple document summaries for ambiguity of sentences and meaningful sentence generation. In this paper, we investigate semantic connection and preprocessing process to process unnecessary information. Based on the vocabulary semantic pattern information, we propose a multi-document summarization method that enhances semantic connectivity between sentences using VAE. Using sentence word vectors, we reconstruct sentences after learning from compressed information and attribute discriminators generated as latent variables, and semantic connection processing generates a natural summary sentence. Comparing the proposed method with other document summarization methods showed a fine but improved performance, which proved that semantic sentence generation and connectivity can be increased. In the future, we will study how to extend semantic connections by experimenting with various attribute settings.

Information Retrieval System : Condor (콘도르 정보 검색 시스템)

  • 박순철;안동언
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.8 no.4
    • /
    • pp.31-37
    • /
    • 2003
  • This paper is a review of the large-scale information retrieval system, CONDOR. This system was developed by the consortium that consists of Chonbuk National University, Searchline Co. and Carnegie Mellon University. This system is based on the probabilistic model of information retrieval systems. The multi-language query processing, online document summarization based on query and dynamic hierarchy clustering of this system make difference of other systems. We test this system with 30 million web documents successfully.

  • PDF

Multi-Document Summarization Method of Reviews Using Word Embedding Clustering (워드 임베딩 클러스터링을 활용한 리뷰 다중문서 요약기법)

  • Lee, Pil Won;Hwang, Yun Young;Choi, Jong Seok;Shin, Young Tae
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.10 no.11
    • /
    • pp.535-540
    • /
    • 2021
  • Multi-document refers to a document consisting of various topics, not a single topic, and a typical example is online reviews. There have been several attempts to summarize online reviews because of their vast amounts of information. However, collective summarization of reviews through existing summary models creates a problem of losing the various topics that make up the reviews. Therefore, in this paper, we present method to summarize the review with minimal loss of the topic. The proposed method classify reviews through processes such as preprocessing, importance evaluation, embedding substitution using BERT, and embedding clustering. Furthermore, the classified sentences generate the final summary using the trained Transformer summary model. The performance evaluation of the proposed model was compared by evaluating the existing summary model, seq2seq model, and the cosine similarity with the ROUGE score, and performed a high performance summary compared to the existing summary model.

Analysis on Automatic Summarization Functions of the Single Document and the Multi Documents (단일문서와 복수문서 자동요약의 특성에 따른 기능 분석)

  • 최상희
    • Proceedings of the Korean Society for Information Management Conference
    • /
    • 2003.08a
    • /
    • pp.303-312
    • /
    • 2003
  • 요약은 원문의 주제를 파악하여 원문의 축약판을 만들어 이용자에게 제공하는 중요한 정보 생산 과정이다. 최근 이용자에게 제공되는 정보량이 급증하면서 자동 요약에 대한 필요성이 더욱 증가하고 있으며 단일문서의 내용을 파악하는 도구로써 활용되던 요약이 문서집합의 내용을 파악하는 도구 및 새로운 정보생성 수단으로 그 기능을 넓혀가고 있다. 본 논고에서는 자동요약의 기본 개념과 요약대상의 문서 수에 따른 요약 특성 및 기능을 고찰하였다.

  • PDF

Measuring Improvement of Sentence-Redundancy in Multi-Document Summarization (다중 문서요약에서 문장의 중복도 측정방법 개선)

  • 임정민;강인수;배재학;이종혁
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.10a
    • /
    • pp.493-495
    • /
    • 2003
  • 다중문서요약에서는 단일문서요약과 달리 문장간의 중복도를 측정하는 방법이 요구된다. 기존에는 중복된 단어의 빈도수를 이용하거나, 구문트리 구조를 이용한 방법이 있으나, 중복도를 측정하는데 도움이 되지 못하는 단어와, 구문분석기 성능에 따라서 중복도 측정에 오류를 발생시킨다. 본 논문은 주절 종속절의 구분, 문장성분, 주절 용언의 의미를 이용하는 문장간 중복도 측정방법을 제안한다. 위의 방법으로 구현된 시스템은 기존의 중복된 단어 빈도수 방식에 비해 정확율에서 56%의 성능 향상이 있었다.

  • PDF