• 제목/요약/키워드: Multi-Criteria Decision

검색결과 384건 처리시간 0.022초

다기준 의사결정기반 고속도로 공사구간 VSL전략에 관한 연구 (A Study on Variable Speed Limit Strategies in Freeway Work Zone Using Multi-Criteria Decision Making Process)

  • 박준영;오철;장명순
    • 대한교통학회지
    • /
    • 제31권5호
    • /
    • pp.3-15
    • /
    • 2013
  • 본 연구에서는 고속도로 공사구간에 이동이 가능한 PVMS(Portable Variable Message Sign)를 일정 간격으로 설치하여 VSL을 구현하는 교통류 제어전략을 구성하여 공사구간에 어떠한 영향을 미치는지 파악하고자 하였다. 다기준 의사결정 기법 중 하나인 AHP기법 및 다기준 가치함수를 이용하여 교통소통, 교통안전, 환경을 대표하는 척도들을 동시에 고려할 수 있는 평가 방법론을 정립하였으며, VSL전략의 도입 전 후 개선효과를 도출하고 실시간으로 수집되는 교통량 및 중차량 혼입율을 고려한 최적 VSL전략 대안선정을 연구의 목표로 하였다. 개발된 평가 방법론을 통해 시뮬레이션 결과를 분석하였으며, 결과의 통계적 유의성 검정을 위해 분산분석을 수행하였다. 분석결과, VSL 대안 2(PVMS 400m간격)가 6개의 Case에서, VSL 대안 1(PVMS 200m간격)이 5개의 Case에서, VSL 대안 4(PVMS 800m간격)는 1개의 Case에서 최적 대안으로 도출되었다. VSL 대안 3(PVMS 600m간격)는 모든 Case에서 최적 대안으로 선택되지 않았으며 4개 Case에서 가장 안 좋은 대안으로 나타났다. 이는 VSL전략이 항상 개선된 효과를 보이지 않는 것을 의미하며 교통상황별로 적정 대안의 도입이 필요하다는 것을 나타낸다. 본 연구에서 시도된 AHP기법을 이용하여 여러 효과척도를 복합적으로 고려한 교통류관리전략 평가방법은 향후 다목적 의사결정방법의 교통류관리전략에 적용 시 하나의 예시가 될 수 있을 것으로 기대되며, 연구에서 제안하는 PVMS를 이용한 공사구간 VSL전략은 교통정보센터에서 실시간으로 수집되는 데이터를 통해 교통류 관리를 위한 운영 및 제어방안에 활용될 것으로 기대된다.

Developing a comprehensive model of the optimal exploitation of dam reservoir by combining a fuzzy-logic based decision-making approach and the young's bilateral bargaining model

  • M.J. Shirangi;H. Babazadeh;E. Shirangi;A. Saremi
    • Membrane and Water Treatment
    • /
    • 제14권2호
    • /
    • pp.65-76
    • /
    • 2023
  • Given the limited water resources and the presence of multiple decision makers with different and usually conflicting objectives in the exploitation of water resources systems, especially dam's reservoirs; therefore, the decision to determine the optimal allocation of reservoir water among decision-makers and stakeholders is a difficult task. In this study, by combining a fuzzy VIKOR technique or fuzzy multi-criteria decision making (FMCDM) and the Young's bilateral bargaining model, a new method was developed to determine the optimal quantitative and qualitative water allocation of dam's reservoir water with the aim of increasing the utility of decision makers and stakeholders and reducing the conflicts among them. In this study, by identifying the stakeholders involved in the exploitation of the dam reservoir and determining their utility, the optimal points on trade-off curve with quantitative and qualitative objectives presented by Mojarabi et al. (2019) were ranked based on the quantitative and qualitative criteria, and economic, social and environmental factors using the fuzzy VIKOR technique. In the proposed method, the weights of the criteria were determined by each decision maker using the entropy method. The results of a fuzzy decision-making method demonstrated that the Young's bilateral bargaining model was developed to determine the point agreed between the decisions makers on the trade-off curve. In the proposed method, (a) the opinions of decision makers and stakeholders were considered according to different criteria in the exploitation of the dam reservoir, (b) because the decision makers considered the different factors in addition to quantitative and qualitative criteria, they were willing to participate in bargaining and reconsider their ideals, (c) due to the use of a fuzzy-logic based decision-making approach and considering different criteria, the utility of all decision makers was close to each other and the scope of bargaining became smaller, leading to an increase in the possibility of reaching an agreement in a shorter time period using game theory and (d) all qualitative judgments without considering explicitness of the decision makers were applied to the model using the fuzzy logic. The results of using the proposed method for the optimal exploitation of Iran's 15-Khordad dam reservoir over a 30-year period (1968-1997) showed the possibility of the agreement on the water allocation of the monthly total dissolved solids (TDS)=1,490 mg/L considering the different factors based on the opinions of decision makers and reducing conflicts among them.

An integral based fuzzy approach to evaluate waste materials for concrete

  • Onat, Onur;Celik, Erkan
    • Smart Structures and Systems
    • /
    • 제19권3호
    • /
    • pp.323-333
    • /
    • 2017
  • Waste materials in concrete have been considered as one of the most important issues by the authorities, policy makers and researchers to maintain engineering serviceability in terms of economy, durability and sustainability. Therefore, evaluation and selection of waste materials with respect to multi criteria decision making (MCDM) for the construction industry has been gained importance for recovery and reuse. In this paper, Choquet integral based fuzzy approach is proposed for evaluating the most suitable waste materials with respect to compressive strength, tensile strength, flexural strength, compactness, toughness (resistivity for dynamic loads), water absorption and accessibility. On conclusion, waste tyre and silica fume were determined as the most suitable waste materials for concrete production. The obtained results are recommended to assist the authorities on configuring well designed strategies for construction industry with disposal materials.

핵심 기술 파악을 위한 특허 분석 방법: 데이터 마이닝 및 다기준 의사결정 접근법 (A patent analysis method for identifying core technologies: Data mining and multi-criteria decision making approach)

  • 김철현
    • 대한안전경영과학회지
    • /
    • 제16권1호
    • /
    • pp.213-220
    • /
    • 2014
  • This study suggests new approach to identify core technologies through patent analysis. Specially, the approach applied data mining technique and multi-criteria decision making method to the co-classification information of registered patents. First, technological interrelationship matrices of intensity, relatedness, and cross-impact perspectives are constructed with support, lift and confidence values calculated by conducting an association rule mining on the co-classification information of patent data. Second, the analytic network process is applied to the constructed technological interrelationship matrices in order to produce the importance values of technologies from each perspective. Finally, data envelopment analysis is employed to the derived importance values in order to identify priorities of technologies, putting three perspectives together. It is expected that suggested approach could help technology planners to formulate strategy and policy for technological innovation.

A Hybrid Approach for the Morpho-Lexical Disambiguation of Arabic

  • Bousmaha, Kheira Zineb;Rahmouni, Mustapha Kamel;Kouninef, Belkacem;Hadrich, Lamia Belguith
    • Journal of Information Processing Systems
    • /
    • 제12권3호
    • /
    • pp.358-380
    • /
    • 2016
  • In order to considerably reduce the ambiguity rate, we propose in this article a disambiguation approach that is based on the selection of the right diacritics at different analysis levels. This hybrid approach combines a linguistic approach with a multi-criteria decision one and could be considered as an alternative choice to solve the morpho-lexical ambiguity problem regardless of the diacritics rate of the processed text. As to its evaluation, we tried the disambiguation on the online Alkhalil morphological analyzer (the proposed approach can be used on any morphological analyzer of the Arabic language) and obtained encouraging results with an F-measure of more than 80%.

A GOAL PROGRAMMING MODEL FOR THE BEST POSSIBLE SOLUTION TO LOAN ALLOCATION PROBLEMS

  • Sharma, Dinesh-K.;Ghosh, Debasis;Alade, Julius-A.
    • Journal of applied mathematics & informatics
    • /
    • 제9권1호
    • /
    • pp.197-211
    • /
    • 2002
  • In this paper, we propose a multi-Criteria decision making approach to address the problem of finding the best possible solution in credit unions. Sensitivity analysis on the priority structure of the goals has been performed to obtain all possible solutions. The study uses the Euclidean distance method to measure distances of all possible solutions from the identified ideal solution. The possible optimum solution is determined from the minimum distance between the ideal solution and other possible solutions of the Problem.

CBP 시장 체제하에서의 전력수급계획 수립 체계에 관한 연구 (A Study on the Generation Expansion Planning System Under the Cost Based Pool)

  • 한석만;김발호
    • 전기학회논문지
    • /
    • 제58권5호
    • /
    • pp.918-922
    • /
    • 2009
  • The power expansion planning is large and capital intensive capacity planning. In the past, the expansion planning was established with the proper supply reliability in order to minimize social cost. However, the planning cannot use cost minimizing objective function in the power markets with many market participants. This paper proposed the power expansion planning process in the power markets. This system is composed of Regulator and GENCO's model. Regulator model used multi-criteria decision making rule. GENCO model is very complex problem. Thus, this system transacted the part by several scenario assuming GENCO model.

New Similarity Measures of Simplified Neutrosophic Sets and Their Applications

  • Liu, Chunfang
    • Journal of Information Processing Systems
    • /
    • 제14권3호
    • /
    • pp.790-800
    • /
    • 2018
  • The simplified neutrosophic set (SNS) is a generalization of fuzzy set that is designed for some practical situations in which each element has truth membership function, indeterminacy membership function and falsity membership function. In this paper, we propose a new method to construct similarity measures of single valued neutrosophic sets (SVNSs) and interval valued neutrosophic sets (IVNSs), respectively. Then we prove that the proposed formulas satisfy the axiomatic definition of the similarity measure. At last, we apply them to pattern recognition under the single valued neutrosophic environment and multi-criteria decision-making problems under the interval valued neutrosophic environment. The results show that our methods are effective and reasonable.

Selecting optimized concrete structure by Analytic Hierarchy Process (AHP)

  • Ebrahimi, Morteza;Hedayat, Amir Ahmad;Fakhrabadi, Hamed
    • Computers and Concrete
    • /
    • 제22권3호
    • /
    • pp.327-336
    • /
    • 2018
  • Increase in population and its daily increasing in our today society results in an increase in housing demand while traditional methods are not applicable. The project preparation and realization processes, based on theoretical and empirical studies, a creation of goods, services, and technologies, are the most important human activities. Selection of effective technological systems in construction is a complex multi-criteria decision-making task. Many decision-makers refuse innovations once faced with similar difficulties. Therefore, using modern materials and methods in this industry is necessary. Modern methods increase quality and construction speed in addition to decrease energy consumption and costs. One of the problems in the way of any project is selecting construction system compatible with the project needs and characteristics. In the present research, different concrete structures such as common reinforced concrete (RC) structure, prefabricated, Insulating Concrete Formwork (ICF), 3D Panel and Tunnel Concrete Formwork (TCF) for buildings with limited floors in Iran are studied and compared from the viewpoint of different criteria like cost, time, applicability and technical characteristics with industrialization approach. Therefore, some questionnaires filled out by construction industry experts in order to compare criteria and sub-criteria in addition to evaluation of optimized structural systems. Then, results of the questionnaires ranked by Analytic Hierarchy Process (AHP) and the most effective alternative selected. The AHP results show that 3D Panel system 36.5%, ICF 21.7%, TCF 19.03%, prefabricated system 13.3% and common RC system 9.3% are the most and the least efficient systems respectively.

Application of Analytic Hierarchy Process for the Selection of Cotton Fibers

  • Majumdar Abhijit;Sarkar Bijan;Majumdar Prabal Kumar
    • Fibers and Polymers
    • /
    • 제5권4호
    • /
    • pp.297-302
    • /
    • 2004
  • In many engineering applications, the final decision is based on the evaluation of a number of alternatives in terms of a number of criteria. This problem may become very intricate when the selection criteria are expressed in terms of different units or the pertinent data are difficult to be quantified. The Analytic Hierarchy Process (AHP) is an effective way in dealing with such kind of complicated problems. Cotton fiber is selected or graded, in the spinning industries, based on several quality criteria. However, the existing selection or grading method based on Fiber quality Index (FqI) is rather crude and ambiguous. This paper presents a novel approach of cotton fiber selection using the AHP methodology of Multi Criteria Decision Making.