• Title/Summary/Keyword: Multi-Constellation

Search Result 75, Processing Time 0.026 seconds

A Performance Improvement of CR-MMA Adaptive Equalization Algorithm using Adaptive Modulus and Adaptive Stepsize (Adaptive Modulus와 Adaptive Stepsize를 이용한 CR-MMA 적응 등화 알고리즘의 성능 개선)

  • Lim, Seung-Gag
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.5
    • /
    • pp.107-113
    • /
    • 2019
  • This paper proposes the Hybrid-CRMMA adaptive equalization algorithm that is possible to improves the performance of CR-MMA based on adaptive modulus and adaptive stepsize. The 16-QAM nonconstant modulus signal is reduced to 4-QAM constant modulus signal, and the error signal were obtained based on the fixed statistic modulus of transmitted signal. It is possible to improving the currently MMA adaptive equalization performance. The proposed Hybrid-CRMMA composed of adaptive modulus which is propotional to the power of equalizer output and adaptive stepsize which is function of the nonlinearties of error signal, and its improved equalization performance were confirmed by computer simulation. For this purpose, the output signal constellation, the residual isi and maximum distortion and MSE that is for the convergence characteristics, the SER that is meaning the robustness of external noise of algorithm were used. As a result of computer simulation, it was confirmed that the proposed Hybrid-CRMMA has more superior performance in every index compared to currently CR-MMA.

Assessment of Position Degradation Due to Intermittent Broadcast of RTK MSM Correction Under Various Conditions

  • Yoon, Hyo Jung;Lim, Cheol soon;Park, Byungwoon
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.9 no.3
    • /
    • pp.237-248
    • /
    • 2020
  • GNSS has been evolving dramatically in recent years. There are currently 6 GNSS (4 GNSS, AND 2 RNSS) constellations, which are GPS (USA), GLONASS (Russia), BeiDou (China), Galileo (EU), QZSS (Japan), and IRNSS (India). The Number of navigation satellites is expected to be over 150 by 2020. As the number of both constellations and satellites used for the improvement of positioning performance, high accuracy, and robustness of precise positioning is more promising. However, a large amount of the correction messages is required to support the augmentation system for the available satellites of all the constellations. Since bandwidth for the correction messages is generally limited, sending or scheduling the correction messages might be a critical issue in the near future. In this study, we analyze the relationship between the size of the bandwidth and Real-Time Kinematics (RTK) performance. Multiple Signal Messages (MSM), the only Radio Technical Commission for Maritimes (RTCM) message that supports multi-constellation GNSS, has been used for this assessment. Instead of the conventional method that broadcasts all the messages at the same time, we assign the MSM broadcasting interval for each constellation in 5 seconds. An open sky static and dynamic test for this study was conducted on the roof of Sejong University. Our results show that the RTK fixed position accuracy is not affected by the 5-second interval corrections, but the ambiguity fixing rate is degraded for poor DOP cases when RTK correction are transmitted intermittently.

A Performance Comparison of CR-MMA and FC-MMA Adaptive Equalization Algorithm in 2 dimensional QAM Signal (2차원 QAM 신호에서 CR-MMA와 FC-MMA 적응 등화 알고리즘의 성능 비교)

  • Lim, Seung-Gag
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.1
    • /
    • pp.85-90
    • /
    • 2018
  • This paper compares the equalization algorithm of CR-MMA (Constellation Reduction-Multi Modulus Algorithm) and FC-MMA (Fast Convergence-Multi Modulus Algorithm) for the compensation of channel's distortion in transmitting the 2 dimensional 16-QAM signals. The CR-MMA adaptive equalizer use the error signal by reduce the nonconstant modulus signal to constant modulus signal in order to updates the tap coefficient, and the FC-MMA adptive equalizer use the error signal applying the modified dispersion constant considering the number of symbol level instead of signal point reduction. These two algorithm are known to its superior to the convergence characteristic among the MMA series equalizer. In this paper, the other equalization performance including the convergence characteristic was compared by computer simulation. As a result of computer simulation, FC-MMA has more good performance in the residual isi, maximum distortion and SER performance than CR-MMA, but not in convergence speed.

Performance Comparison of CR-MMA and RMMA Algorithm for Adaptive Equalization in 16-QAM Signals (16-QAM 신호에서 적응 등화를 위한 CR-MMA와 RMMA 알고리즘의 성능 비교)

  • Lim, Seung-Gag
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.3
    • /
    • pp.87-92
    • /
    • 2017
  • This paper compares the equalization algorithm of CR-MMA (Constellation Reduction-Multi Modulus Algorithm) and RMMA (Region based Multi Modulus Algorithm) for the compensation of channel's distortion in nonconstant modulus signal. In order to obtain the error signal for adaptive equalization, every signal points are reduced to the constant modulus signal in CR-MMA and every signal points are separated into the 4 regions, then the reductions are performed based on this region in RMMA. These two algorithm based on the reduction principle such as in order to updating the tap coefficient in the adaptive equalization, it has different equalization performance. The computer simulation was performed in order to compare the each equalization performance in this paper. As a result of computer simulation, RMMA has more good performance in the residual isi, maximum distortion and SER performance than CR-MMA, but not in convergence speed.

Selection Methods of Multi-Constellation SBAS in WAAS-EGNOS Overlap Region (WAAS-EGNOS 중첩 영역 내 위성기반 보강시스템 선택 기법 연구)

  • Kim, Mingyu;Kim, Jeongrae
    • Journal of Advanced Navigation Technology
    • /
    • v.23 no.3
    • /
    • pp.237-244
    • /
    • 2019
  • Since SBAS provides users with GNSS orbit, clock, and ionospheric corrections and integrity, the more precise positioning is possible. As the SBAS service area is expanded due to the development of the SBAS and the installation of the additional ground stations, there is a region where two or more SBAS messages can be received. However, the research on multi-constellation SBAS selection method has not carried out. In this study, we compared the result of positioning accuracy after applying the SBAS correction selected by using WAAS priority, EGNOS priority, or error covariance comparison method to LEO satellites in the regions where WAAS and EGNOS signals are transmitted simultaneously. When using WAAS priority method, 3D orbit error is smallest at 2.57 m. The covariance comparison method is outperform at the center of the overlap region far from each WAAS and EGNOS stations. In the eastern region near the EGNOS stations, the 3D orbit errors using EGNOS priority method is 8% smaller than the errors using the WAAS priority method.

Clipping Value Estimate for Iterative Tree Search Detection

  • Zheng, Jianping;Bai, Baoming;Li, Ying
    • Journal of Communications and Networks
    • /
    • v.12 no.5
    • /
    • pp.475-479
    • /
    • 2010
  • The clipping value, defined as the log-likelihood ratio (LLR) in the case wherein all the list of candidates have the same binary value, is investigated, and an effective method to estimate it is presented for iterative tree search detection. The basic principle behind the method is that the clipping value of a channel bit is equal to the LLR of the maximum probability of correct decision of the bit to the corresponding probability of erroneous decision. In conjunction with multilevel bit mappings, the clipping value can be calculated with the parameters of the number of transmit antennas, $N_t$; number of bits per constellation point, $M_c$; and variance of the channel noise, $\sigma^2$, per real dimension in the Rayleigh fading channel. Analyses and simulations show that the bit error performance of the proposed method is better than that of the conventional fixed-value method.

The Performance of LDC MIMO Transmission Method by Applying Rotated Constellation for Next Generation UHDTV System (차세대 UHDTV 방송시스템을 위한 회전성상이 적용된 LDC MIMO 전송 기법 성능 평가)

  • Jo, Bong Gyun;Han, Dong Seog
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2013.06a
    • /
    • pp.32-33
    • /
    • 2013
  • 본 논문에서는 높은 전송량을 요구하는 차세대 UHDTV(ultra-high definition television) 방송시스템을 위하여 MIMO(multi-input multi-output) 전송 기법을 고려하였다. 이러한 MIMO 전송 기법 중에서 가장 좋은 수신 성능을 나타내며, 송신 안테나 개수에 비례하여 전송량이 증가하는 LDC 전송 기법과 수신 성능 향상을 위하여 회전성상 및 심벌의 지연을 이용하는 기법을 고려하였다. 연속적인 에러가 발생하는 채널환경에서 수신 성능을 향상시키기 위해서는 신호를 분산시켜 전송하거나 신호를 섞어서 보내는 방법이 필요하다. 그러므로 본 논문에서는 이러한 두 가지 기법을 동시에 고려하여 높은 전송량을 달성하면서 수신 성능을 향상시킬 수 있는 회전성상이 적용된 LDC MIMO 전송 기법을 제안하고 수신 성능을 컴퓨터 시뮬레이션을 통하여 분석하였다.

  • PDF

Quasi-Orthogonal STBC with Iterative Decoding in Bit Interleaved Coded Modulation

  • Sung, Chang-Kyung;Kim, Ji-Hoon;Lee, In-Kyu
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.4A
    • /
    • pp.426-433
    • /
    • 2008
  • In this paper, we present a method to improve the performance of the four transmit antenna quasi-orthogonal space-time block code (STBC) in the coded system. For the four transmit antenna case, the quasi-orthogonal STBC consists of two symbol groups which are orthogonal to each other, but intra group symbols are not. In uncoded system with the matched filter detection, constellation rotation can improve the performance. However, in coded systems, its gain is absorbed by the coding gain especially for lower rate code. We propose an iterative decoding method to improve the performance of quasi-orthogonal codes in coded systems. With conventional quasi-orthogonal STBC detection, the joint ML detection can be improved by iterative processing between the demapper and the decoder. Simulation results shows that the performance improvement is about 2dB at 1% frame error rate.

Design of AGC and DC Offset Remover for Cable Modem (케이블 모뎀을 위한 AGC 및 DC offset Remover 설계)

  • 김기윤;최형진
    • Proceedings of the IEEK Conference
    • /
    • 1999.11a
    • /
    • pp.775-779
    • /
    • 1999
  • This paper presents design of AGC(Automatic Gain Control) and DC offset remover suitable for cable modem which makes use of QAM(Quadrature Amplitude Modulation) scheme. Since QAM has multi-level signal characteristic, for high-order QAM, the constellation is dense and the distance of decision boundary between adjacent symbols is short. So AGC and DC offset remover must be designed optionally for preventing performance degradation. AGC is designed into feedback type and is related to the STR(Symbol Timing Recovery)and Paff interpolation algorithm. Whereas AGC need to perform average power detection during many symbols by comparison with the reference power, DC offset remover uses only the instant polarity decision such that simple implementation can be achieved with good performance. Though the AGC and DC offset remover are simulated here only for 256 QAM scheme for convenience'sake, it can be applied to other multi-level QAM or PSK modulation scheme.

  • PDF

Analysis of MIMO and Rotated Constellation Transmission System for Ultra High Definition Television (OFDM 시스템에서 LDC 기법을 이용한 채널추정 및 성능 분석)

  • Jo, Bong Gyun;Han, Dong Seog
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2012.11a
    • /
    • pp.62-63
    • /
    • 2012
  • 본 논문에서는 MIMO(multi-input multi-output)-OFDM(Orthogonal frequency-division multiplexing) 시스템에서 정확한 채널 추정을 위하여 CAZAC 시퀀스를 LDC(linear dispersion code)로 부호화하여 전송하는 시스템을 제안한다. MIMO 시스템의 성능은 채널 추정 성능에 크게 영향을 받는다. 또한 MIMO 시스템은 송수신 안테나 개수에 따라 채널의 개수가 증가하므로 서로 다른 송신 안테나에서 전송된 훈련열을 수신기에서 정확히 분리해야 한다. 그러므로 MIMO-OFDM 시스템에서 훈련열로 사용되어질 CAZAC 시퀀스를 LDC로 부호화하여 수신 채널간의 간섭을 제거하는 방법을 제시하고 그 성능을 컴퓨터 시뮬레이션을 통하여 비교분석하였다.

  • PDF