• Title/Summary/Keyword: Multi-Axis

Search Result 563, Processing Time 0.027 seconds

Synthesis of Multi-Walled Carbon Nanotubes and Nanofibers on a Catalytic Metal Substrate Using an Ethylene Inverse Diffusion Flame as a Heat Source (에틸렌 역확산화염을 열원으로 사용하여 촉매금속 기판 상에 합성한 탄소나노튜브와 탄소나노섬유)

  • Lee, Gyo-Woo;Jurng, Jong-Soo;Kang, Kyung-Tae;Hwang, Jung-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.9
    • /
    • pp.1081-1092
    • /
    • 2004
  • The synthesis of Ni-catalyzed multi-walled carbon nanotubes and nanofibers on a catalytic metal substrate, using an ethylene fueled inverse diffusion flame as a heat source, was investigated. When the gas temperature was varied from 1,400K to 900K, approximately, carbon nanotubes with diameters of 20∼60nm were formed on the substrate. In the regions where the gas temperature was higher than 1,400K or lower than 900K, iron nanorods or carbon nanofibers were synthesized, respectively. Based on the quantitative analyses of large amount of SEM and TEM images, the nanotubes formed closer to the flame had a tendency of having larger diameters. HR-TEM images and Raman spectra revealed that carbon nanotubes synthesized had multi-walled structures with some defective graphite layers at the wall. Based on the graphite mode of the Raman spectra, it was believed that the optimal synthesis could be obtained as the substrate was positioned at between 5.5mm and 5.0mm, from the flame axis.

Implementation of the Classification system for Dental Behavior using Multi-Axial Classification System (다축분류체계를 이용한 치과용 의료행위 분류체계 구축)

  • Ahn, S.H.;Chun, M.C.;Kim, M.S.;Hong, J.Y.;Kim, K.T.;Jun, K.R.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1998 no.11
    • /
    • pp.255-256
    • /
    • 1998
  • In this paper, we propose the multi-axial classification system using parallel coding method that is systemic and flexible properties for representing dental clinical behavior. The methodology and organization of this thesis as follows. First, an analysis of other classification systems. Second, the domain of medical behavior and axises using selected elements was were determined. Third, the new code system is constructed of these common factors in properties of prediction of hierarchy, brevity, simplicity, flexibility and mnemonic usage. Finally, the framework of classification system for dental was made using multi-axial code system. The result of the this study, the eight bases axis of multi-axial code system is composed and can be basic information of research for construction of classification system of all medical domain.

  • PDF

Microstructure and Trapped Magnetic Field of Multi-Seeded Single Domain YBCO

  • Bierlich, J.;Habisreuther, T.;Litzkendorf, D.;Zeisberger, M.;Gawalek, W.
    • Progress in Superconductivity
    • /
    • v.8 no.1
    • /
    • pp.8-15
    • /
    • 2006
  • The size of the superconducting domains and the critical current density inside these domains have to be enhanced for most of cryomagnetic applications of melt-textured YBCO bulks. To enlarge the size of the domains we studied the multi-seeding technique based on a well-established procedure for preparing high quality YBCO monoliths using self-made SmBCO seeds. The distance between the seeds was optimised as a result of the investigation of the effects of various seed distances on the characteristics of the grain boundary Junctions. The influences of a-b plane intersections and c-axis misalignments were researched. Thereby, a small range of tolerance of the misorientations between the seed crystals was found. Field mapping was applied to control the materials quality and the superconductor's grain structure was investigated using polarisation microscopy. YBCO function elements with iou. seeds in a line and an arrangement of making type (100)/(100) and (110)/(110) boundary junctions, respectively, were processed. The trapped field profile in both sample types shows single domain behaviour. To demonstrate the potential of the multi-seeding method a ring-shaped sample was processed by placing sixteen seeds in a way to make both (100)/(100) and (110)/(110) grain junctions at the same time. The results up to now are very promising to prepare large single domain melt-textured YBCO semi-finished products in complex shapes.

  • PDF

Development of a Multi-nozzle Bioprinting System for 3D Scaffold Fabrication (3차원 지지체 제작을 위한 다중 분사체 노즐 바이오프린팅 시스템 개발)

  • Park, Sanghoon;Kim, Seongjun;Song, Seung-Joon;Choi, Jaesoon
    • Journal of Biomedical Engineering Research
    • /
    • v.36 no.6
    • /
    • pp.271-275
    • /
    • 2015
  • The aim of this study was to develop a multi-nozzle based bioprinting system for fabrication of three-dimensional (3D) biological structure. In this study, a thermoplastic biomaterial that has relatively high mechanical stability, polycaprolactone (PCL) was used to make the 3D structure. A multi-nozzle bioprinting system was designed to dispense thermoplastic biomaterial and hydrogel simultaneously. The system that consists of 3-axes of x-y-z motion control stage and a compartment for injection syringe control mounted on the stage has been developed. Also, it has 1-axis actuator for position change of nozzle. The controllability of the printed line width with PCL was tested as a representative performance index.

Implementation and Performance Evaluation of Preempt-RT Based Multi-core Motion Controller for Industrial Robot (산업용 로봇 제어를 위한 Preempt-RT 기반 멀티코어 모션 제어기의 구현 및 성능 평가)

  • Kim, Ikhwan;Ahn, Hyosung;Kim, Taehyoun
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.12 no.1
    • /
    • pp.1-10
    • /
    • 2017
  • Recently, with the ever-increasing complexity of industrial robot systems, it has been greatly attention to adopt a multi-core based motion controller with high cost-performance ratio. In this paper, we propose a software architecture that aims to utilize the computing power of multi-core processors. The key concept of our architecture is to use shared memory for the interplay between threads running on separate processor cores. And then, we have integrated our proposed architecture with an industrial standard compliant IDE for automatic code generation of motion runtime. For the performance evaluation, we constructed a test-bed consisting of a motion controller with Preempt-RT Linux based dual-core industrial PC and a 3-axis industrial robot platform. The experimental results show that the actuation time difference between axes is 10 ns in average and bounded up to 689 ns under $1000{\mu}s$ control period, which can come up with real-time performance for industrial robot.

Fabrication and Charactreization of YBCO Multi-layer Thin Films for Josephson device (죠셉슨 소자구현을 위한 YBCO다층 박막 제작 및 특성)

  • Lee, H.S.;Park, J.Y.;Park, S.H.;Lee, D.H.;Park, H.J.;Kim, Y.J.
    • Proceedings of the KIEE Conference
    • /
    • 2002.06a
    • /
    • pp.49-51
    • /
    • 2002
  • In this thesis, Josephson junction using high-Tc superconducting multi-layer thin film has been fabricated by on-axis RF magnetron sputtering method. And, the characterizations were performed by X-ray diffraction, SEM and the measuring system of critical current density. The physical properties of multi-layer superconducting thin films were also analyzed with the measured results. To fabricate the multi-layer superconducting thin films, the optimum partial pressure of Argon and Oxgen and the temperature of substrate were measured. Also, YBaCuO thin film was grown on MgO and $SrTiO_3$ substrates by rf-sputtering and LGO thin film of 30 A was epitaxially grown on the YBaCuO thin film as a josephson junction with the same condition. The schottky barrier at the contact surface between YBaCuO/LGO and YBaCuO/Au and the energy gap of 0.5 ${\sim}$ 0.6 mV in Nb were observed from the dI/dV-V of YBaCuO/LGO/Au/Nb and YBaCuO/Au/Nb.

  • PDF

Multi-camera Calibration Method for Optical Motion Capture System (광학식 모션캡처를 위한 다중 카메라 보정 방법)

  • Shin, Ki-Young;Mun, Joung-H.
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.6
    • /
    • pp.41-49
    • /
    • 2009
  • In this paper, the multi-camera calibration algorithm for optical motion capture system is proposed. This algorithm performs 1st camera calibration using DLT(Direct linear transformation} method and 3-axis calibration frame with 7 optical markers. And 2nd calibration is performed by waving with a wand of known length(so called wand dance} throughout desired calibration volume. In the 1st camera calibration, it is obtained not only camera parameter but also radial lens distortion parameters. These parameters are used initial solution for optimization in the 2nd camera calibration. In the 2nd camera calibration, the optimization is performed. The objective function is to minimize the difference of distance between real markers and reconstructed markers. For verification of the proposed algorithm, re-projection errors are calculated and the distance among markers in the 3-axis frame and in the wand calculated. And then it compares the proposed algorithm with commercial motion capture system. In the 3D reconstruction error of 3-axis frame, average error presents 1.7042mm(commercial system) and 0.8765mm(proposed algorithm). Average error reduces to 51.4 percent in commercial system. In the distance between markers in the wand, the average error shows 1.8897mm in the commercial system and 2.0183mm in the proposed algorithm.

Structural Analysis of Spaceborne Two-axis Gimbal-type Antenna of Compact Advanced Satellite (차세대 중형위성용 2축 짐벌식 안테나의 구조해석)

  • Park, Yeon-Hyeok;You, Chang-Mok;Kang, Eun-Su;Oh, Hyun-Ung
    • Journal of Aerospace System Engineering
    • /
    • v.12 no.2
    • /
    • pp.37-45
    • /
    • 2018
  • A two-axis gimbal-type antenna for a Compact Advanced Satellite (CAS) is used to efficiently transmit high resolution image data to a ground station. In this study, we designed the structure of a two-axis gimbal-type antenna while applying a launch lock device to secure its structural safety under a launch environment. To validate the effectiveness of the structural design, a structural analysis of the antenna was performed. First, a modal analysis was performed to investigate the dynamic responses of the antenna with and without the mechanical constraints of the launch lock device. In addition, a quasi-static analysis was performed to confirm the structural safety of the antenna structure and bolt I/Fs between the antenna base and the satellite. The suitable range of constraint force on the launch lock device was also determined to ensure the structural safety and mechanical gapping of the ball & socket interfaces, which places multi-constraints on the azimuth and elevation stage of the antenna.

Development of Large-scale Tool Dynamometer for Measuring Three-axis Individual Force (3축 분력 측정이 가능한 대형 공구동력계 개발)

  • Kim, Joong-Seon;Wang, Duck-Hyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.5
    • /
    • pp.29-36
    • /
    • 2019
  • In modern society in which the fourth industrial revolution has come to the fore and rapid technology innovations are taking place, a phenomenon of making and selling small quantities of various products that consumers want instead of mass producing one item has emerged. As the market is moving toward the multi-item small-sized production system, there is a need for a system in which a machine independently judges and carries out machining and post-processing. In order for a machine to judge processing on its own, it is necessary to measure the force applied to a product. This study aimed to develop a large-scale dynamometer that enables three-axis measurement using octagonal ring load cells. As for the device's configuration, four octagonal ring load cells, which were previously researched, were used to enable three-axis measurement. It was reconfigured by modifying the attachment position of the octagonal ring load cells' strain gauge and the Wheatstone bridge of each axis, and a system was set up to allow the monitoring of data measured through the monitor. The configured device calculated a strain rate by an experiment, and this rate was compared with the theoretical strain rate to find a correction value. The correction value was entered into a formula, deriving a modified formula. The modified formula was entered into the device, which completed the large-scale dynamometer.

Study on Performance Variation According to the Arrangements of Adjacent Vertical-Axis Turbines for Tidal Current Energy Conversion (인접한 조류발전용 수직축 터빈의 배치방식에 따른 성능 변화)

  • Lee, Jeong-Ki;Hyun, Beom-Soo
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.19 no.2
    • /
    • pp.151-158
    • /
    • 2016
  • Tidal farm is a multi-arrayed turbine system for utilizing tidal stream energy. For horizontal-axis turbine(HAT) system, it is recommended that each unit has to be deployed far apart in order to avoid hydrodynamic interference among turbines, as proposed by the European Marine Energy Centre(EMEC). But there is no rule for the arrangement of vertical-axis turbine(VAT) yet. Moreover it has been reported that a proper arrangement of adjacent turbines can enhance the overall efficiency even greater than an arrangement without mutual interference effect. This paper suggests the layout of VATs showing the better performances, which turned out to be quite different from HATs' arrangement. Numerical calculations were performed to investigate the performance variation in terms of the rotational direction as well as the distance between turbines. It has been shown that the best combination of rotational direction and distance between turbines can increase its performance higher about 9.2% than that of two independently operated turbines. It is likely that such improvement is due to the increased velocity between adjacent turbines. For diagonally arranged turbines, the maximum normalized mean power coefficient was obtained to be higher about 5.6% than that of two independent turbines. It is expected that the present results can be utilized for conceptual design of tidal farm to harness the tidal stream energy.