• Title/Summary/Keyword: Multi-Agent Learning

Search Result 118, Processing Time 0.032 seconds

Deep reinforcement learning for a multi-objective operation in a nuclear power plant

  • Junyong Bae;Jae Min Kim;Seung Jun Lee
    • Nuclear Engineering and Technology
    • /
    • v.55 no.9
    • /
    • pp.3277-3290
    • /
    • 2023
  • Nuclear power plant (NPP) operations with multiple objectives and devices are still performed manually by operators despite the potential for human error. These operations could be automated to reduce the burden on operators; however, classical approaches may not be suitable for these multi-objective tasks. An alternative approach is deep reinforcement learning (DRL), which has been successful in automating various complex tasks and has been applied in automation of certain operations in NPPs. But despite the recent progress, previous studies using DRL for NPP operations have limitations to handle complex multi-objective operations with multiple devices efficiently. This study proposes a novel DRL-based approach that addresses these limitations by employing a continuous action space and straightforward binary rewards supported by the adoption of a soft actor-critic and hindsight experience replay. The feasibility of the proposed approach was evaluated for controlling the pressure and volume of the reactor coolant while heating the coolant during NPP startup. The results show that the proposed approach can train the agent with a proper strategy for effectively achieving multiple objectives through the control of multiple devices. Moreover, hands-on testing results demonstrate that the trained agent is capable of handling untrained objectives, such as cooldown, with substantial success.

An Efficient Multi-Attribute Negotiation System using Learning Agents for Reciprocity (상호 이익을 위한 학습 에이전트 기반의 효율적인 다중 속성 협상 시스템)

  • Park, Sang-Hyun;Yang, Sung-Bong
    • The KIPS Transactions:PartD
    • /
    • v.11D no.3
    • /
    • pp.731-740
    • /
    • 2004
  • In this paper we propose a fast negotiation agent system that guarantees the reciprocity of the attendants in a bilateral negotiation on the e-commerce. The proposednegotiation agent system exploits the incremental learning method based on an artificial neural network in generating a counter-offer and is trained by the previous offer that has been rejected by the other party. During a negotiation, the software agents on behalf of a buyer and a seller negotiate each other by considering the multi-attributes of a product. The experimental results show that the proposed negotiation system achieves better agreements than other negotiation agent systems that are operated under the realistic and practical environment. Furthermore, the proposed system carries out negotiations about twenty times faster than the previous negotiation systems on the average.

Multi Colony Intensification.Diversification Interaction Ant Reinforcement Learning Using Temporal Difference Learning (Temporal Difference 학습을 이용한 다중 집단 강화.다양화 상호작용 개미 강화학습)

  • Lee Seung-Gwan
    • The Journal of the Korea Contents Association
    • /
    • v.5 no.5
    • /
    • pp.1-9
    • /
    • 2005
  • In this paper, we suggest multi colony interaction ant reinforcement learning model. This method is a hybrid of multi colony interaction by elite strategy and reinforcement teaming applying Temporal Difference(TD) learning to Ant-Q loaming. Proposed model is consisted of some independent AS colonies, and interaction achieves search according to elite strategy(Intensification, Diversification strategy) between the colonies. Intensification strategy enables to select of good path to use heuristic information of other agent colony. This makes to select the high frequency of the visit of a edge by agents through positive interaction of between the colonies. Diversification strategy makes to escape selection of the high frequency of the visit of a edge by agents achieve negative interaction by search information of other agent colony. Through this strategies, we could know that proposed reinforcement loaming method converges faster to optimal solution than original ACS and Ant-Q.

  • PDF

A Multi-agent System for Web-based Course Scheduling (웹 기반 코스 스케쥴링을 위한 멀티 에이전트 시스템)

  • 양선옥;이종희
    • Journal of Korea Multimedia Society
    • /
    • v.6 no.6
    • /
    • pp.1046-1053
    • /
    • 2003
  • Recently various new model of teaching-learning as web based education system has been proposed. The demand for the customized courseware which is required from the learners is increased, the needs of the efficient and automated education agents in the web-based instruction are recognized. But many education systems that had been studied recently did not service fluently the courses which learners had been wanting and could not provide the way for the learners to study the teaming weakness which is observed in the continuous feedback of the course. In this paper we propose a multi-agent system for course scheduling of learner-oriented using weakness analysis algorithm. First proposed system analyze learner's result of evaluation and calculates teaming accomplishment. From this accomplishment the multi-agent schedules the suitable course for the learner The learner achieves an active and complete learning from the repeated and suitable course.

  • PDF

Analysis of suitable evacuation routes through multi-agent system simulation within buildings

  • Castillo Osorio, Ever Enrique;Seo, Min Song;Yoo, Hwan Hee
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.39 no.5
    • /
    • pp.265-278
    • /
    • 2021
  • When a dangerous event arises for people inside a building and an immediate evacuation is required, it is important that suitable routes have been previously defined. These situations can happen especially when buildings are crowded, making the occupants have a very high vulnerability and can be trapped if they do not evacuate quickly and safely. However, in most cases, routes are considered based just on their proximity or short distance to the exit areas, and evacuation simulations that include more variables are not performed. This work aims to propose a methodology for building's indoor evacuation activities under the premise of processing simulation scenarios in multi-agent environments. In the methodology, importance indexes of simplified and validated geometry data from a BIM (Building Information Modeling) are considered as heuristic input data in a proposed algorithm. The algorithm is based on AP-Theta* pathfinding and collision avoidance machine learning techniques. It also includes conditioning variables such as the number of people, speed of movement as well as reaction ability of the agents that influence the evacuation times. Moreover, collision avoidance is applied between people or with objects along the route. The simulations using the proposed algorithm are tested in NetLogo for diverse scenarios, showing feasible evacuation routes and calculating evacuation times in a multi-agent environment. The experimental results are obtained by applying the method in a study case and demonstrate the level of effectiveness of the algorithm, and the influence of the conditioning variables analyzed together when performing safe evacuation routes.

The Application of Direction Vector Function for Multi Agents Strategy and The Route Recommendation System Research in A Dynamic Environment (멀티에이전트 전략을 위한 방향벡터 함수 활용과 동적 환경에 적응하는 경로 추천시스템에 관한 연구)

  • Kim, Hyun;Chung, Tae-Choong
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.48 no.2
    • /
    • pp.78-85
    • /
    • 2011
  • In this paper, a research on multi-agent is carried out in order to develop a system that can provide drivers with real-time route recommendation by reflecting Dynamic Environment Information which acts as an agent in charge of Driver's trait, road condition and Route recommendation system. DEI is equivalent to number of n multi-agent and is an environment variable which is used in route recommendation system with optimal routes for drivers. Route recommendation system which reflects DEI can be considered as a new field of topic in multi-agent research. The representative research of Multi-agent, the Prey Pursuit Problem, was used to generate a fresh solution. In this thesis paper, you will be able to find the effort of indulging the lack of Prey Pursuit Problem,, which ignored practicality. Compared to the experiment, it was provided a real practical experiment applying the algorithm, the new Ant-Q method, plus a comparison between the strategies of the established direction vector was put into effect. Together with these methods, the increase of the efficiency was able to be proved.

Emotional Intelligence System for Ubiquitous Smart Foreign Language Education Based on Neural Mechanism

  • Dai, Weihui;Huang, Shuang;Zhou, Xuan;Yu, Xueer;Ivanovi, Mirjana;Xu, Dongrong
    • Journal of Information Technology Applications and Management
    • /
    • v.21 no.3
    • /
    • pp.65-77
    • /
    • 2014
  • Ubiquitous learning has aroused great interest and is becoming a new way for foreign language education in today's society. However, how to increase the learners' initiative and their community cohesion is still an issue that deserves more profound research and studies. Emotional intelligence can help to detect the learner's emotional reactions online, and therefore stimulate his interest and the willingness to participate by adjusting teaching skills and creating fun experiences in learning. This is, actually the new concept of smart education. Based on the previous research, this paper concluded a neural mechanism model for analyzing the learners' emotional characteristics in ubiquitous environment, and discussed the intelligent monitoring and automatic recognition of emotions from the learners' speech signals as well as their behavior data by multi-agent system. Finally, a framework of emotional intelligence system was proposed concerning the smart foreign language education in ubiquitous learning.

Strategic Coalition for Improving Generalization Ability of Multi-agent with Evolutionary Learning (진화학습을 이용한 다중에이전트의 일반화 성능향상을 위한 전략적 연합)

  • 양승룡;조성배
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.2
    • /
    • pp.101-110
    • /
    • 2004
  • In dynamic systems, such as social and economic systems, complex interactions emerge among its members. In that case, their behaviors become adaptive according to Changing environment. In many cases, an individual's behaviors can be modeled by a stimulus-response system in a dynamic environment. In this paper, we use the Iterated Prisoner's Dilemma (IPD) game, which is simple yet capable of dealing with complex problems, to model the dynamic systems. We propose strategic coalition consisting of many agents and simulate their emergence in a co-evolutionary learning environment. Also we introduce the concept of confidence for agents in a coalition and show how such confidences help to improve the generalization ability of the whole coalition. Experimental results are presented to demonstrate that co-evolutionary learning with coalitions and confidence allows better performing strategies that generalize well.

GENETIC PROGRAMMING OF MULTI-AGENT COOPERATION STRATEGIES FOR TABLE TRANSPORT

  • Cho, Dong-Yeon;Zhang, Byoung-Tak
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.06a
    • /
    • pp.170-175
    • /
    • 1998
  • Transporting a large table using multiple robotic agents requires at least two group behaviors of homing and herding which are to bo coordinated in a proper sequence. Existing GP methods for multi-agent learning are not practical enough to find an optimal solution in this domain. To evolve this kind of complex cooperative behavior we use a novel method called fitness switching. This method maintains a pool of basis fitness functions each of which corresponds to a primitive group behavior. The basis functions are then progressively combined into more complex fitness functions to co-evolve more complex behavior. The performance of the presented method is compared with that of two conventional methods. Experimental results show that coevolutionary fitness switching provides an effective mechanism for evolving complex emergent behavior which may not be solved by simple genetic programming.

  • PDF

Multi-agent Coordination Strategy Using Reinforcement Learning (강화 학습을 이용한 다중 에이전트 조정 전략)

  • Kim, Su-Hyun;Kim, Byung-Cheon;Yoon, Byung-Joo
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2000.10a
    • /
    • pp.285-288
    • /
    • 2000
  • 본 논문에서는 다중 에이전트(multi-agent) 환경에서 에이전트들의 행동을 효율적으로 조정 (coordination)하기 위해 강화 학습(reinforcement learning)을 이용하였다. 제안된 방법은 각 에이전트가 목표(goal)와의 거리 관계(distance relationship)와 인접 에이전트들과의 공간 관계(spatial relationship)를 이용하였다. 그러므로 각 에이전트는 다른 에이전트와 충돌(collision) 현상이 발생하지 않으면서, 최적의 다음 상태를 선택할 수 있다. 또한, 상태 공간으로부터 입력되는 강화 값이 0과 1 사이의 값을 갖기 때문에 각 에이전트가 선택한 (상태, 행동) 쌍이 얼마나 좋은가를 나타낼 수 있다. 제안된 방법을 먹이 포획 문제(prey pursuit problem)에 적용한 결과 지역 제어(local control)나. 분산 제어(distributed control) 전략을 이용한 방법보다 여러 에이전트들의 행동을 효율적으로 조정할 수 있었으며, 매우 빠르게 먹이를 포획할 수 있음을 알 수 있었다.

  • PDF