• 제목/요약/키워드: Multi roll forming

검색결과 23건 처리시간 0.029초

FEM을 이용한 Forming Roll 설계 (Design of Forming Roll using FEM)

  • 윤형준;윤영식
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.761-764
    • /
    • 2005
  • In this paper, multi-pass roll forming process is simulated with a commercial FEM software. From these simulations, detects like excessive thickness decrease were estimated. And effects of springback, idle roll without force, and self-contacts between materials were also predicted. As a result, the defects of the forming process and the numbers of the roll pass can be decreased. And these analyses will be able to design the optimal roll forming process.

  • PDF

전조공법을 이용한 동관의 하이핀 튜브 제조 공정에 대한 연구 (A Study on the Manufacturing Process for High-finned Tube of Copper Pipe using Roll Forming Method)

  • 김태규
    • 한국재료학회지
    • /
    • 제16권2호
    • /
    • pp.111-115
    • /
    • 2006
  • High-finned tubes have good thermal conductivity and have better cooling efficiency than plain tubes or low-fined tubes due to bigger air contact area. During high-fined tubes are manufactured by roll forming, the main technique is illustrated to optimizing primary material(copper pipe), optimized die matrix designing technique for roll forming, control manufacturing speed to develop productivity etc. In this study, a roll forming system was developed in oder to produce high-finned tube. Also a multi-step roll forming die was designed & built to produce high-finned tube that has over 10 mm fin height. And then, roll forming test using copper pipe was performed to produce high-finned tube. Roll forming process for producing highfinned tube was optimized by analyzing and adjusting misrostructure, hardness, and surface roughness of roll formed high-fined tube.

롤포밍공정에서의 스크래치 결함에 대한 연구 (Study on Scratch Defect of Roll Forming Process)

  • 김낙수;홍석무
    • 대한기계학회논문집A
    • /
    • 제25권8호
    • /
    • pp.1213-1219
    • /
    • 2001
  • In this paper, modeling of the multi-pass roll forming process with the finite element method and defect prediction in roll forming process are presented. In the roll forming process, there occurs the defect of scratch. It appears on tubes because of the friction between the strip and the roll, the unexpected sliding velocity and the contact pressure when fabricating the tubes. The surface of the product will be not uniform due to the defect. The scratch can be predicted with the simulation modeling of the finite element method, and can be avoided by modifying the design.

다중곡률형상의 판재성형을 위한 가변롤성형 기술 (Flexible Roll Forming Technology for Multi-Curved Sheet Metal Forming)

  • 윤준석;손소은;송우진;김정;강범수
    • 소성∙가공
    • /
    • 제22권5호
    • /
    • pp.243-249
    • /
    • 2013
  • The multi-point forming (MPF) process for three-dimensional curved sheet metal has been developed as an alternative to the conventional die forming process since MPF allows the manufacturing of various shapes using one die set and reduce the cost of production. However, the MPF process cannot provide high quality products yet due to defects occurring in the sheet such as dimples and wrinkles. It can also lead to economic loss because of long tool setup time and additional machining required outside of the sheet formed area. In this study, a new sheet metal forming method, called flexible roll forming (FRF), is proposed to solve the problems of existing processes for three-dimensional curved sheet metal. This progressive process utilizes adjusting rods, as well as upper and lower flexible rollers as forming tools. In contrast with the existing processes, FRF can reduce the additional production costs because of the possible blank size for the part longitudinal direction, which is unrestricted. In this research, methods and procedures of the flexible roll forming technology are described. Numerical forming simulations of representative three-dimensional curved sheet products are also carried out to demonstrate the feasibility of this technology.

고강도강 자동차 부품의 롤 성형 공정의 탄소성 유한요소해석 (Elastic-Plastic Finite Element Analysis of the Roll Forming Process for an Automotive Part of High Strength Steel)

  • 김광희
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 추계학술대회 논문집
    • /
    • pp.480-483
    • /
    • 2005
  • A roll forming process is developed for an automotive part of high strength steel. Forming rolls are designed through the plane strain elastic-plastic finite element analysis to estimate the springback. It is assumed that the process can be approximated as a series of multi-step bending processes. Then the 3D elastic-plastic finite element analysis with the solid element is carried out for the designed roll forming process. The prototype roll forming machine and the forming rolls are made and the experiments are carried out. The results of the analysis and the experiments are compared.

  • PDF

다중곡률 판재성형을 위한 비정형롤판재성형 공정의 형상설계변수에 대한 연구 (Effect of Shape Design Variables on Flexibly-Reconfigurable Roll Forming of Multi-curved Sheet Metal)

  • 손소은;윤준석;김정;강범수
    • 소성∙가공
    • /
    • 제23권2호
    • /
    • pp.103-109
    • /
    • 2014
  • Flexibly-reconfigurable roll forming (FRRF), which is a sheet forming process for multi-curved sheet metal, may solve both the economic and technical problems incurred in using a conventional die forming process. In the FRRF process, the multi-curved sheet metal is formed by different strain distributions on the sheet metal, and the reconfigurable rollers are used as tools during the forming. Therefore, a thorough investigation focused on the reconfigurable rollers is required for the realization of the FRRF process prior to the fabrication of FRRF machine. In the current study, a series of finite element simulations were conducted to study the load distributions experienced by the reconfigurable roller. In order to verify the shape design variables, the effect of the metal thickness on the curvatures of sheet is also presented.

고강도강 자동차 부품 생산을 위한 롤 성형 공정 개발 (Development of Roll Forming Process for an Automotive Part of High Strength Steel)

  • 김광희;심성보
    • 한국기계가공학회지
    • /
    • 제4권3호
    • /
    • pp.45-50
    • /
    • 2005
  • A roll forming process for an automotive part of high strength steel is developed. The preliminary flower is generated semi-automatically by an AutoLISP program. The roll forming process is approximated as a multi-step bending process and the preliminary flower is analyzed by the plane strain finite element method. Then, the first flower is selected and modified through the finite element analysis. With the final flower, forming rolls are designed and constructed. Experiments are carried out on a prototype roll forming machine.

  • PDF

멀티 롤 포밍 공정의 품질 안정성에 대한 해석 및 실험적 연구 (Analytical and Experimental Study on the Quality Stability of Multi Roll Forming Process)

  • 손재환;한창우;류경진;강해동;김철홍
    • 한국산학기술학회논문지
    • /
    • 제16권10호
    • /
    • pp.6977-6984
    • /
    • 2015
  • 품질 향상을 위해 연속적인 소성 변형을 이용한 롤 포밍 공정에 피어싱, 벤딩, 트리밍 등 별도의 가공공정을 통합한 볼 슬라이드 레일의 멀티 롤 포밍 공정의 필요성이 대두되고 있다. 하지만 프레스기의 진동 및 소음은 이 공정에서 생산되는 슬라이드 레일의 품질 저하를 유발한다. 본 연구에서는 롤 포밍 유한요소 프로그램으로 최적 변형률을 고려하여 롤을 설계하였다. 그리고 멀티 공정의 정적 안정성을 예측하기 위해 구조해석 프로그램으로 프레스기에 대한 응력 및 변형량을 계산하였다. 또한 공진영역에서의 장치들의 운전을 회피하기 위해 Modal 해석을 통해 1, 2차 모드에서의 고유진동수를 계산하였다. 그 결과 공정의 동적 안정성 개선을 확인하기 위해 마이크로폰과 가속도계를 이용하여 기존 및 연구 공정들의 소음, 진동의 크기를 비교하였다. 그리고 기존 및 연구 공정으로 생산되어진 레일의 폭 치수와 표면거칠기를 측정하였다. 따라서 해석 및 실험적 연구를 통해 멀티 롤 포밍 공정이 안정하다는 것을 알 수 있었다.

UHSS 하이드로포밍 개발을 위한 박육관의 롤 포밍 기술 연구 (The Study of Roll-forming Technology for UHSS Hydroformed Parts)

  • 박성필;권용재
    • 한국자동차공학회논문집
    • /
    • 제23권1호
    • /
    • pp.41-48
    • /
    • 2015
  • In the automotive industry, it is required to reduce weight of the car and improve fuel efficiency. Competitive pricing is also a very important issue. That's why application of welded steel tube is increasing in order to produce a vehicle with a competitive price. Also, hydroforming technology is asking more and more for thinner tubing to realize to a lighter vehicle design. Steel tube is produced through a multi-stage process called roll forming. In that case, bucking and work hardening should be considered key forming technology is to prevent buckling and minimize work hardening during steel tubing for hydroforming To prevent buckling, it is required to optimize forming process in order to minimize stretching in edge sections and hold tightly cross-section during welding. And to minimize work hardening, it is needed to know the proper process to avoid reforming.