• Title/Summary/Keyword: Multi resolution image

Search Result 556, Processing Time 0.026 seconds

Characteristics of Multi-Spatial Resolution Satellite Images for the Extraction of Urban Environmental Information

  • Seo, Dong-Jo;Park, Chong-Hwa;Tateishi, Ryutaro
    • Proceedings of the KSRS Conference
    • /
    • 1998.09a
    • /
    • pp.218-224
    • /
    • 1998
  • The coefficients of variation obtained from three typical vegetation indices of eight levels of multi-spatial resolution images in urban areas were employed to identify the optimum spatial resolution in terms of maintaining information quality. These multi-spatial resolution images were prepared by degrading 1 meter simulated, 16 meter ADEOS/AVNIR, and 30 meter Landsat-TM images. Normalized Difference Vegetation Index (NDVI), Perpendicular Vegetation Index (PVI) and Soil Adjusted Ratio Vegetation Index (SARVI) were applied to reduce data redundancy and compare the characteristics of multi-spatial resolution image of vegetation indices. The threshold point on the curve of the coefficient of variation was defined as the optimum resolution level for the analysis with multi-spatial resolution image sets. Also, the results from the image segmentation approach of region growing to extract man-made features were compared with these multi-spatial resolution image sets.

  • PDF

Multi- Resolution MSS Image Fusion

  • Ghassemian, Hassan;Amidian, Asghar
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.648-650
    • /
    • 2003
  • Efficient multi-resolution image fusion aims to take advantage of the high spectral resolution of Landsat TM images and high spatial resolution of SPOT panchromatic images simultaneously. This paper presents a multi-resolution data fusion scheme, based on multirate image representation. Motivated by analytical results obtained from high-resolution multispectral image data analysis: the energy packing the spectral features are distributed in the lower frequency bands, and the spatial features, edges, are distributed in the higher frequency bands. This allows to spatially enhancing the multispectral images, by adding the high-resolution spatial features to them, by a multirate filtering procedure. The proposed method is compared with some conventional methods. Results show it preserves more spectral features with less spatial distortion.

  • PDF

Image Fusion Framework for Enhancing Spatial Resolution of Satellite Image using Structure-Texture Decomposition (구조-텍스처 분할을 이용한 위성영상 융합 프레임워크)

  • Yoo, Daehoon
    • Journal of the Korea Computer Graphics Society
    • /
    • v.25 no.3
    • /
    • pp.21-29
    • /
    • 2019
  • This paper proposes a novel framework for image fusion of satellite imagery to enhance spatial resolution of the image via structure-texture decomposition. The resolution of the satellite imagery depends on the sensors, for example, panchromatic images have high spatial resolution but only a single gray band whereas multi-spectral images have low spatial resolution but multiple bands. To enhance the spatial resolution of low-resolution images, such as multi-spectral or infrared images, the proposed framework combines the structures from the low-resolution image and the textures from the high-resolution image. To improve the spatial quality of structural edges, the structure image from the low-resolution image is guided filtered with the structure image from the high-resolution image as the guidance image. The combination step is performed by pixel-wise addition of the filtered structure image and the texture image. Quantitative and qualitative evaluation demonstrate the proposed method preserves spectral and spatial fidelity of input images.

An Improved Multi-resolution image fusion framework using image enhancement technique

  • Jhee, Hojin;Jang, Chulhee;Jin, Sanghun;Hong, Yonghee
    • Journal of the Korea Society of Computer and Information
    • /
    • v.22 no.12
    • /
    • pp.69-77
    • /
    • 2017
  • This paper represents a novel framework for multi-scale image fusion. Multi-scale Kalman Smoothing (MKS) algorithm with quad-tree structure can provide a powerful multi-resolution image fusion scheme by employing Markov property. In general, such approach provides outstanding image fusion performance in terms of accuracy and efficiency, however, quad-tree based method is often limited to be applied in certain applications due to its stair-like covariance structure, resulting in unrealistic blocky artifacts at the fusion result where finest scale data are void or missed. To mitigate this structural artifact, in this paper, a new scheme of multi-scale fusion framework is proposed. By employing Super Resolution (SR) technique on MKS algorithm, fine resolved measurement is generated and blended through the tree structure such that missed detail information at data missing region in fine scale image is properly inferred and the blocky artifact can be successfully suppressed at fusion result. Simulation results show that the proposed method provides significantly improved fusion results in the senses of both Root Mean Square Error (RMSE) performance and visual improvement over conventional MKS algorithm.

Resolution Merge of SPOT-5 Image for National Land Monitoring (국토모니터링을 위한 SPOT-5 위성영상 융합)

  • Park, Kyeong-Sik;Choi, Seok-Keun;Lee, Jae-Kee
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2007.04a
    • /
    • pp.141-144
    • /
    • 2007
  • Satellite image for national land monitoring is required high resolution and natural color with multi spectral band. the image is expensive as higher resolution. We need cheap image relatively in economic viewpoint but the image serves sufficient resolution to monitor national land. We merged two images to one image and evaluated the result. the two images which are used at the merge test are high resolution(2.5m per pixel) panchromatic and low resolution(10m per pixel) multi spectral image of SPOT-5 satellite. The result of this study. We made the merge image to have sufficient resolution for national monitoring.

  • PDF

Low Resolution Rate Face Recognition Based on Multi-scale CNN

  • Wang, Ji-Yuan;Lee, Eung-Joo
    • Journal of Korea Multimedia Society
    • /
    • v.21 no.12
    • /
    • pp.1467-1472
    • /
    • 2018
  • For the problem that the face image of surveillance video cannot be accurately identified due to the low resolution, this paper proposes a low resolution face recognition solution based on convolutional neural network model. Convolutional Neural Networks (CNN) model for multi-scale input The CNN model for multi-scale input is an improvement over the existing "two-step method" in which low-resolution images are up-sampled using a simple bi-cubic interpolation method. Then, the up sampled image and the high-resolution image are mixed as a model training sample. The CNN model learns the common feature space of the high- and low-resolution images, and then measures the feature similarity through the cosine distance. Finally, the recognition result is given. The experiments on the CMU PIE and Extended Yale B datasets show that the accuracy of the model is better than other comparison methods. Compared with the CMDA_BGE algorithm with the highest recognition rate, the accuracy rate is 2.5%~9.9%.

Real Scene Text Image Super-Resolution Based on Multi-Scale and Attention Fusion

  • Xinhua Lu;Haihai Wei;Li Ma;Qingji Xue;Yonghui Fu
    • Journal of Information Processing Systems
    • /
    • v.19 no.4
    • /
    • pp.427-438
    • /
    • 2023
  • Plenty of works have indicated that single image super-resolution (SISR) models relying on synthetic datasets are difficult to be applied to real scene text image super-resolution (STISR) for its more complex degradation. The up-to-date dataset for realistic STISR is called TextZoom, while the current methods trained on this dataset have not considered the effect of multi-scale features of text images. In this paper, a multi-scale and attention fusion model for realistic STISR is proposed. The multi-scale learning mechanism is introduced to acquire sophisticated feature representations of text images; The spatial and channel attentions are introduced to capture the local information and inter-channel interaction information of text images; At last, this paper designs a multi-scale residual attention module by skillfully fusing multi-scale learning and attention mechanisms. The experiments on TextZoom demonstrate that the model proposed increases scene text recognition's (ASTER) average recognition accuracy by 1.2% compared to text super-resolution network.

Super-Resolution Image Reconstruction Using Multi-View Cameras (다시점 카메라를 이용한 초고해상도 영상 복원)

  • Ahn, Jae-Kyun;Lee, Jun-Tae;Kim, Chang-Su
    • Journal of Broadcast Engineering
    • /
    • v.18 no.3
    • /
    • pp.463-473
    • /
    • 2013
  • In this paper, we propose a super-resolution (SR) image reconstruction algorithm using multi-view images. We acquire 25 images from multi-view cameras, which consist of a $5{\times}5$ array of cameras, and then reconstruct an SR image of the center image using a low resolution (LR) input image and the other 24 LR reference images. First, we estimate disparity maps from the input image to the 24 reference images, respectively. Then, we interpolate a SR image by employing the LR image and matching points in the reference images. Finally, we refine the SR image using an iterative regularization scheme. Experimental results demonstrate that the proposed algorithm provides higher quality SR images than conventional algorithms.

Content-Based Image Retrieval Using Combined Color and Texture Features Extracted by Multi-resolution Multi-direction Filtering

  • Bu, Hee-Hyung;Kim, Nam-Chul;Moon, Chae-Joo;Kim, Jong-Hwa
    • Journal of Information Processing Systems
    • /
    • v.13 no.3
    • /
    • pp.464-475
    • /
    • 2017
  • In this paper, we present a new texture image retrieval method which combines color and texture features extracted from images by a set of multi-resolution multi-direction (MRMD) filters. The MRMD filter set chosen is simple and can be separable to low and high frequency information, and provides efficient multi-resolution and multi-direction analysis. The color space used is HSV color space separable to hue, saturation, and value components, which are easily analyzed as showing characteristics similar to the human visual system. This experiment is conducted by comparing precision vs. recall of retrieval and feature vector dimensions. Images for experiments include Corel DB and VisTex DB; Corel_MR DB and VisTex_MR DB, which are transformed from the aforementioned two DBs to have multi-resolution images; and Corel_MD DB and VisTex_MD DB, transformed from the two DBs to have multi-direction images. According to the experimental results, the proposed method improves upon the existing methods in aspects of precision and recall of retrieval, and also reduces feature vector dimensions.

Assessment of the Ochang Plain NDVI using Improved Resolution Method from MODIS Images (MODIS영상의 고해상도화 수법을 이용한 오창평야 NDVI의 평가)

  • Park, Jong-Hwa;La, Sang-Il
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.9 no.6
    • /
    • pp.1-12
    • /
    • 2006
  • Remote sensing cannot provide a direct measurement of vegetation index (VI) but it can provide a reasonably good estimate of vegetation index, defined as the ratio of satellite bands. The monitoring of vegetation in nearby urban regions is made difficult by the low spatial resolution and temporal resolution image captures. In this study, enhancing spatial resolution method is adapted as to improve a low spatial resolution. Recent studies have successfully estimated normalized difference vegetation index (NDVI) using improved resolution method such as from the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard EOS Terra satellite. Image enhancing spatial resolution is an important tool in remote sensing, as many Earth observation satellites provide both high-resolution and low-resolution multi-spectral images. Examples of enhancement of a MODIS multi-spectral image and a MODIS NDVI image of Cheongju using a Landsat TM high-resolution multi-spectral image are presented. The results are compared with that of the IHS technique is presented for enhancing spatial resolution of multi-spectral bands using a higher resolution data set. To provide a continuous monitoring capability for NDVI, in situ measurements of NDVI from paddy field was carried out in 2004 for comparison with remotely sensed MODIS data. We compare and discuss NDVI estimates from MODIS sensors and in-situ spectroradiometer data over Ochang plain region. These results indicate that the MODIS NDVI is underestimated by approximately 50%.