• Title/Summary/Keyword: Multi radar tracking

Search Result 79, Processing Time 0.027 seconds

Range Error of Monopulse Radar according to the Engagement Angle of Cross-Eye Jammer (크로스아이 재머의 조우각에 따른 모노펄스 레이다의 거리 오차)

  • Lim, Joong-Soo;Chae, Gyoo-Soo
    • Journal of Convergence for Information Technology
    • /
    • v.10 no.5
    • /
    • pp.30-35
    • /
    • 2020
  • In this paper, we analyzed the tracking error for the monopulse radar by controlling the phase difference, amplitude ratio and engagement angle of the cross-eye jammer. Cross-eye jamming is an important jamming method for monopulse radars, which causes a displacement in the radar receiving antenna input and misleads the radar's tracking angle. As a result of analyzing the tracking distance error of the radar while changing the engagement angle between the monopulse radar and jammer, the maximum distance error occurs when the engagement angle is 0° and the phase difference is 180°. It was confirmed that the error decreased to 70% or less of the maximum distance error into 45°~135°. In order to increase the efficiency of jammers, it is necessary to study rotary jammers or multi-channel jammers. This study will be very useful for the design of cross-eye jammers for aircraft and ships.

Educational hardware and simulator development of Multifunction Array Radar

  • Lee, Jong-Hyun;Kim, Tae-Jun;Chun, Joo-Hwan;Park, Jin-Kyu;Kim, Yong-Hwan
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1797-1801
    • /
    • 2004
  • In this paper we show the hardware testbed and software simulator of multi function array radar (MFAR). The hardware MFAR is simple and flexible hardware to implement various radar beamforming and detecting algorithms. To overcome the limitation of hardware MFAR, the software simulator is proposed. User can simulate radar under the various environment conditions adjusting the parameter of simulator. User can set environment of radar, such as the location and velocity of target, jammer and the terrain clutter. The radar use various probing pulses and supports two operation mode, surveillance and tracking mode.

  • PDF

Robust Maneuvering Target Tracking Applying the Concept of Multiple Model Filter and the Fusion of Multi-Sensor (다중센서 융합 및 다수모델 필터 개념을 적용한 강인한 기동물체 추적)

  • Hyun, Dae-Hwan;Yoon, Hee-Byung
    • Journal of Intelligence and Information Systems
    • /
    • v.15 no.1
    • /
    • pp.51-64
    • /
    • 2009
  • A location tracking sensor such as GPS, INS, Radar, and optical equipments is used in tracking Maneuvering Targets with a multi-sensor, and such systems are used to track, detect, and control UAV, guided missile, and spaceship. Until now, Most of the studies related to tracking Maneuvering Targets are on fusing multiple Radars, or adding a supplementary sensor to INS and GPS. However, A study is required to change the degree of application in fusions since the system property and error property are different from sensors. In this paper, we perform the error analysis of the sensor properties by adding a ground radar to GPS and INS for improving the tracking performance by multi-sensor fusion, and suggest the tracking algorithm that improves the precision and stability by changing the sensor probability of each sensor according to the error. For evaluation, we extract the altitude values in a simulation for the trajectory of UAV and apply the suggested algorithm to carry out the performance analysis. In this study, we change the weight of the evaluated values according to the degree of error between the navigation information of each sensor to improve the precision of navigation information, and made it possible to have a strong tracking which is not affected by external purposed environmental change and disturbance.

  • PDF

TB and Knapsack Based Improved Scheduling Techniques for Multi-Function Radar (TB와 냅색 기반의 향상된 다기능 레이다 스케줄링 기법)

  • Hwang, Min-Young;Yang, Woo-Young;Shin, Sang-Jin;Chun, Joohwan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.12
    • /
    • pp.976-985
    • /
    • 2018
  • Modern radars such as the phase array radar can handle various tasks by generating a beam from a phased array antenna. Radar can be used for miscellaneous applications such as surveillance, tracking, missile guidance etc. Previous radar systems could handle only one task at a time. As such, multiple radars were required to perform simultaneous tasks. Multi-function radars can perform many tasks using only one radar system. However, the radar's resources are limited in this instance. To efficiently utilize time, it is necessary to properly schedule tasks in the radar's timeline. In this report, we investigate the efficiency of different scheduling tasks.

Implementation of Airborne Multi-Function Radar Including Attitude Maneuvering (자세 기동을 고려한 항공기 탑재 다기능 레이다 통합 시뮬레이터 구현)

  • Ko, Jae-Youl;Park, Soon-Seo;Choi, Han-Lim;Ahn, Jae-Myung;Lee, Sung-Won;Lee, Dong-Hui;Yoon, Jung-Suk
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.3
    • /
    • pp.225-236
    • /
    • 2017
  • In this paper, a simulation test bed is presented which operates to provide full-scale simulation of airborne multi-function phased array radars. This simulation test bed provides a capability to evaluate the target tracking performance. To realize aircraft operation scenario, we developed 6DOF aircraft dynamics model which can generate trajectories and attitude of an aircraft. This procedure includes steady state flight trim search, autopilot design, and aircraft guidance command design. Also, the radar-environment integrated simulator includes target detection/measurement model and tracking filter. Developed simulator is validated by creating an air-to-air scenario.

An Analysis of 2D Positional Accuracy of Human Bodies Detection Using the Movement of Mono-UWB Radar

  • Kiasari, Mohammad Ahangar;Na, Seung You;Kim, Jin Young
    • Journal of Sensor Science and Technology
    • /
    • v.23 no.3
    • /
    • pp.149-157
    • /
    • 2014
  • This paper considers the ability of counting and positioning multi-targets by using a mobile UWB radar device. After a background subtraction process, distinguishing between clutters and human body signals, the position of targets will be computed using weighted Gaussian mixture methods. While computer vision offers many advantages, it has limited performance in poor visibility conditions (e.g., at night, haze, fog or smoke). UWB radar can provide a complementary technology for detecting and tracking humans, particularly in poor visibility or through-wall conditions. As we know, for 2D measurement, one method is the use of at least two receiver antennas. Another method is the use of one mobile radar receiver. This paper tried to investigate the position detection of the stationary human body using the movement of one UWB radar module.

Study of Target Tracking Algorithm using iterative Joint Integrated Probabilistic Data Association in Low SNR Multi-Target Environments (낮은 SNR 다중 표적 환경에서의 iterative Joint Integrated Probabilistic Data Association을 이용한 표적추적 알고리즘 연구)

  • Kim, Hyung-June;Song, Taek-Lyul
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.23 no.3
    • /
    • pp.204-212
    • /
    • 2020
  • For general target tracking works by receiving a set of measurements from sensor. However, if the SNR(Signal to Noise Ratio) is low due to small RCS(Radar Cross Section), caused by remote small targets, the target's information can be lost during signal processing. TBD(Track Before Detect) is an algorithm that performs target tracking without threshold for detection. That is, all sensor data is sent to the tracking system, which prevents the loss of the target's information by thresholding the signal intensity. On the other hand, using all sensor data inevitably leads to computational problems that can severely limit the application. In this paper, we propose an iterative Joint Integrated Probabilistic Data Association as a practical target tracking technique suitable for a low SNR multi-target environment with real time operation capability, and verify its performance through simulation studies.

Airborne Pulsed Doppler Radar Development (비행체 탑재 펄스 도플러 레이다 시험모델 개발)

  • Kwag, Young-Kil;Choi, Min-Su;Bae, Jae-Hoon;Jeon, In-Pyung;Yang, Ju-Yoel
    • Journal of Advanced Navigation Technology
    • /
    • v.10 no.2
    • /
    • pp.173-180
    • /
    • 2006
  • An airborne radar is an essential aviation electronic system of the aircraft to perform various missions in all weather environments. This paper presents the design, development, and test results of the multi-mode pulsed Doppler radar system test model for helicopter-borne flight test. This radar system consists of 4 LRU units, which include ANTU(Antenna Unit), TRU(Tx Rx Unit), RSDU(Radar Signal & Data Processing Unit) and DISU(Display Unit). The developed technologies include the TACCAR processor, planar array antenna, TWTA transmitter, coherent I/Q detector, digital pulse compression, DSP based Doppler FFT filtering, adaptive CFAR, IMU, and tracking capability. The design performance of the developed radar system is verified through various helicopter-borne field tests including MTD (Moving Target Detector) capability for the Doppler compensation due to the moving platform motion.

  • PDF

Real time orbit estimation using asynchronous multiple RADAR data fusion (비동기 다중 레이더 융합을 통한 실시간 궤도 추정 알고리즘)

  • Song, Ha-Ryong;Moon, Byoung-Jin;Cho, Dong-Hyun
    • Aerospace Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.66-72
    • /
    • 2014
  • This paper introduces an asynchronous multiple radar fusion algorithm for space object tracking. To estimate orbital motion of space object, a multiple radar scenario which jointly measures single object with different sampling time indices is described. STK/ODTK is utilized to determine realization of orbital motion and joint coverage of multiple radars. Then, asynchronous fusion algorithm is adapted to enhance the estimation performance of orbital motion during which multiple radars measure the same time instances. Monte-Carlo simulation results demonstrate that the proposed asynchronous multi-sensor fusion scheme better than single linearized Kalman filter in an aspect of root mean square error.

Radar Return Signal Simulation Equipment Using MC-DDS (Multi-Channel Direct Digital Synthesis) (다채널 직접 디지털 합성을 이용한 레이더 반사 신호 모의 장치)

  • Roh, Ji-Eun;Yang, Jin-Mo;Yoo, Gyung-Joo;Gu, Young-Suk;Lee, Sang-Hwa;Song, Sung-Chan;Lee, Hee-Young;Choi, Byung-Gwan;Lee, Min-Joon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.10
    • /
    • pp.966-980
    • /
    • 2011
  • Radar receiving echo signal provides target information - range, velocity and position by signal magnitude and Doppler shift, which are determined by target reflection characteristics and target maneuver. Target angle error is extracted from the magnitude ratio of difference channel to sum channel. In this paper, we introduce a radar Return Signal Simulation Equipment(RSSE) which is implemented for the purpose of performance analysis and evaluation of phased array multi-function radar(MFR). It generates multi-target environment with jamming signals using MC-DDS (Multi-Channel Direct Digital Synthesis), and has scalability by using the efficient hardware configuration. The performance of the developed RSSE has been evaluated under various test environments. Especially, we proved that required target detection performance is achieved by RSP(Radar Signal Processor) interfaced RSSE configuration.