• Title/Summary/Keyword: Multi plasma

Search Result 364, Processing Time 0.033 seconds

Multi-hole RF CCP 방전에서 방전 주파수가 미치는 영향

  • Lee, Heon-Su;Lee, Yun-Seong;Seo, Sang-Hun;Jang, Hong-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.145-145
    • /
    • 2011
  • Recently, multi-hole electrode RF capacitively coupled plasma discharge is being used in the deposition of microcrystalline silicon for thin film solar cell to increase the speed of deposition. To make efficient multi-hole electrode RF capacitively coupled plasma discharge, the hole diameter is to be designed concerning the plasma parameters. In past studies, the relationship between plasma parameters such as pressures and gas species, and hole diameter for efficient plasma density enhancement is experimentally shown. In the presentation, the relationship between plasma deriving frequency and hole diameter for efficient multi-hole electrode RF capacitively coupled plasma discharge is shown. In usual capacitively coupled plasma discharge, plasma parameter, such as plasma density, plasma impedence and plasma temperature, change as frequency increases. Because of the change, the optimum hole diameter of the multi-hole electrode RF capacitively coupled plasma for high density plasma is thought to be modified when the plasma deriving frequency changes. To see the frequency effect on the multi-hole RF capacitively coupled plasma is discharged and one of its electrode is changed from a plane electrode to a variety of multi-hole electrodes with different hole diameters. The discharge is derived by RF power source with various frequency and the plasma parameter is measured with RF compensated single Langmuir probe. The shrinkage of the hole diameter for efficient discharge is observed as the plasma deriving frequency increases.

  • PDF

Research to Achieve Uniform Plasma in Multi-ground Capacitive Coupled Plasma

  • Park, Gi-Jeong;Lee, Yun-Seong;Yu, Dae-Ho;Lee, Jin-Won;Lee, Jeong-Beom;Jang, Hong-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.247.1-247.1
    • /
    • 2014
  • The capacitive coupled plasma is used widely in the semiconductor industries. Especially, the uniformity of the industrial plasma is heavily related with defect ratio of devices. Therefore, the industries need the capacitive coupled plasma source which can generate the uniform plasma and control the plasma's uniformity. To achieving the uniformity of the large area plasma, we designed multi-powered electrodes. We controlled the uniformity by controlling the power of each electrode. After this work, we started to research another concept of the plasma device. We make the plasma chamber that has multi-ground electrodes imaginary (CST microwave studio) and simulate the electric field. The shape of the multi-ground electrodes is ring type, and it is same as the shape of the multi-power electrodes that we researched before. The diameter of the side electrode's edge is 300mm. We assumed that the plasma uniformity is related with the impedance of ground electrodes. Therefore we simulated the imaginary chamber in three cases. First, we connected L (inductor) and C (capacitor) at the center of multi-ground electrodes. Second, we changed electric conductivity of multi-ground electrode. Third, we changed the insulator's thickness between the center ground electrode and the side ground electrode. The driving frequency is 2, 13.56 and 100 MHz. We switched our multi-powered electrode system to multi-ground electrode system. After switching, we measured the plasma uniformity after installing a variable vacuum capacitor at the ground line. We investigate the effect of ground electrodes' impedance to plasma uniformity.

  • PDF

Multi-Secondary Transformer: A Modeling Technique for Simulation - II

  • Patel, A.;Singh, N.P.;Gupta, L.N.;Raval, B.;Oza, K.;Thakar, A.;Parmar, D.;Dhola, H.;Dave, R.;Gupta, V.;Gajjar, S.;Patel, P.J.;Baruah, U.K.
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.3 no.1
    • /
    • pp.78-82
    • /
    • 2014
  • Power Transformers with more than one secondary winding are not uncommon in industrial applications. But new classes of applications where very large number of independent secondaries are used are becoming popular in controlled converters for medium and high voltage applications. Cascade H-bridge medium voltage drives and Pulse Step Modulation (PSM) based high voltage power supplies are such applications. Regulated high voltage power supplies (Fig. 1) with 35-100 kV, 5-10 MW output range with very fast dynamics (${\mu}S$ order) uses such transformers. Such power supplies are widely used in fusion research. Here series connection of isolated voltage sources with conventional switching semiconductor devices is achieved by large number of separate transformers or by single unit of multi-secondary transformer. Naturally, a transformer having numbers of secondary windings (~40) on single core is the preferred solution due to space and cost considerations. For design and simulation analysis of such a power supply, the model of a multi-secondary transformer poses special problem to any circuit analysis software as many simulation softwares provide transformer models with limited number (3-6) of secondary windings. Multi-Secondary transformer models with 3 different schemes are available. A comparison of test results from a practical Multi-secondary transformer with a simulation model using magnetic component is found to describe the behavior closer to observed test results. Earlier models assumed magnetising inductance in a linear loss less core model although in actual it is saturable core made-up of CRGO steel laminations. This article discusses a more detailed representation of flux coupled magnetic model with saturable core properties to simulate actual transformers very close to its observed parameters in test and actual usage.

Comparison between Two 450 mm Multi-Electrode Models

  • Park, Gi-Jeong;Lee, Yun-Seong;Yu, Dae-Ho;Lee, Jin-Won;Jang, Hong-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.490-490
    • /
    • 2013
  • In semiconductor industry, it is expected that plasma process which use 450 mm source will be used at next generation. However, main obstacle of the large area plasma source is plasma uniformity from it. When electrode is enlarged, field difference between center area and side area reduces the plasma uniformity [1-3]. Therefore we investigate multi-electrode which diminish this field difference.We designed two multi-electrode models. One has two segments and the other has five segments. Each multi-electrode model is connected with two power generator and two matchers. One generator and one matcher is connected with center electrode part. The other one generator and the other one matcher is connected with side electrode part. The ion density is measured at 29 points by using floating harmonic method [4-6]. After measuring the data of each multi-electrode model, we discuss the difference of profile between two models' data.

  • PDF

E. coli Disinfection Using a Multi Plasma Reactor (멀티 플라즈마 반응기를 이용한 E. coli 소독)

  • Kim, Dong-Seog;Park, Young-Seek
    • Journal of Environmental Health Sciences
    • /
    • v.39 no.2
    • /
    • pp.187-195
    • /
    • 2013
  • Objectives: For the practical application of the dielectric barrier discharge plasma reactor, a plasma reactor able to manage large volumes of water is needed. This study investigated the possibility of the practical application of a multi-plasma reactor which is a scaled-up version of a single plasma reactor. Methods: The multi-plasma reactor consists of several high-voltage transformers and plasma modules (discharge, ground electrodes and quartz dielectric tubes). The effects of water characteristics such as voltage (30-120 V), air flow rate (1-5 l/min), number of high-voltage transformers and plasma modules, and water quality on Escherichia coli (E. coli) disinfection and decrease of COD and $UV_{254}$ absorbance were investigated. Results: The experimental results showed that at a voltage of over 80 V, most of the E. coli were disinfected within 90 seconds. E. coli inactivation was not affected by the air flow rate. E. coli disinfection in the multiplasma process showed the traditional log-linear form of the disinfection curve. E. coli inactivation performance by transformer 3-Reactor 5 and transformer 3-Reactor 3 were similar. The disinfection performance of the UV process was affected by artificial sewage water. However, the plasma process was less affected by the artificial sewage within the standards for effluent water quality. Conclusions: Disinfection performance with several low voltages and plasma modules of three to five in number applied to the plasma process was higher than that concentrating a small amount of high voltage through a single plasma reactor. Removal of COD, $UV_{254}$ absorbance, and E. coli disinfection with the plasma process were better than with the UV process.

Development of Multi Dielectric Barrier Discharge Plasma Reactor for Water Treatment (수처리용 다중 유전체 방벽 방전 플라즈마 반응기 개발)

  • Kim, Dong-Seog;Park, Young-Seek
    • Journal of Environmental Science International
    • /
    • v.22 no.7
    • /
    • pp.863-871
    • /
    • 2013
  • Dielectric discharges are an emerging technique in environmental pollutant degradation, which that are characterized by the production of hydroxyl radicals as the primary degradation species. For practical application of the plasma reactor, reactor that can handle large amounts of water are needed. Plasma research to date has focused on small-scale water treatment. This study was carried out basic study for scale-up of a single DBD (dielectric barrier discharge) plasma reactor. The degradation of N, N-Dimethyl-4-nitrosoaniline (RNO, indicator of the generation of OH radical) was used as a performance indicator of multi-plasma reactor. The experiments is divided into two parts: design parameters [effect of distance of single plasma module (1~14 cm), arrangement of ground electrode (single and multi), rector number (1~5) and power number (1~5)]; operation parameter [effect of applied voltage (60~220 V), air flow rate (1~5 L/min), electric conductivity of solution ($1.4{\mu}S/cm$, deionized water)~18.8 mS/cm (addition of NaCl 10 g/L) and pH (5~9)]. Considering the electric stability of the plasma reactor, optimum spacing between the single plasma module was 2 cm. Multi discharge electrodes - single ground electrode array was selected. Combination of power 3-plasma module 5 was the optimal combination for maximum RNO degradation. The optimum 1st voltage and air flow rate for RNO degradation were 180 V and 4 L/min, respectively. The pH and conductivity of the solution was not influencing the RNO degradation.

Inactivation of Sewage Microorganisms using Multi-Plasma Process (멀티 플라즈마 공정을 이용한 하수 미생물의 불활성화)

  • Kim, Dong-Seog;Park, Young-Seek
    • Journal of Environmental Science International
    • /
    • v.23 no.5
    • /
    • pp.985-993
    • /
    • 2014
  • For the field application of dielectric barrier discharge plasma reactor, a multi-plasma reactor was investigated for the inactivation of microorganisms in sewage. We also considered the possibility of degradation of non-biodegradable matter ($UV_{254}$) and total organic carbon (TOC) in sewage. The multi-plasma reactor in this study was divided into high voltage neon transformers, gas supply unit and three plasma modules (consist of discharge, ground electrode and quartz dielectric tube). The experimental results showed that the inactivation of microorganisms with treated water type ranked in the following order: distilled water > synthetic sewage effluent >> real sewage effluent. The dissolved various components in the real sewage effluent highly influenced the performance of the inactivation of microorganisms. After continuous plasma treatment for 10 min at 180 V, residual microorganisms appeared below 2 log and $UV_{254}$ absorbance (showing a non-biodegradable substance in water) and TOC removal rate were 27.5% and 8.5%, respectively. Therefore, when the sewage effluent is treated with plasma, it can be expected the inactivation of microorganisms and additional improvement of water quality. It was observed that the $NH_4{^+}$-N and $PO{_4}^{3-}$-P concentrations of sewage was kept at the constant plasma discharging for 30 min. On the other hand, $NO_3{^-}$-N concentration was increased with proceeding of the plasma discharge.

Age-related Changes in Plasma Leptin from Early Growing to Late Finishing Stages of Castrated Holstein Steers: Utilizing Multi-species Leptin RIA

  • Vega, R.A.;Lee, H.G.;Kuwayama, H.;Matsunaga, N.;Hidari, H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.15 no.5
    • /
    • pp.725-731
    • /
    • 2002
  • This experiment was performed to understand the changes in plasma leptin in association with plasma IGF-1, body weight and ADG from early growing to late finishing stages of Holstein steers. Blood collection was performed by arterial vein puncture at selected monthly ages of 1 (54 kg), 2.6 (103 kg), 7.2 (205 kg), 13.5 (314 kg), 16.9 (414 kg), 22.2 (550 kg), 24.9 (626 kg) and 27.4 months (695 kg). The blood was analyzed for leptin using the multi-species leptin RIA with recombinant bovine leptin (rbleptin) as standard, plasma IGF-1 was also measured using RIA. Against the standard rbleptin, the multi-species Leptin RIA system's sensitivity, cross reactivity, slope and recovery of 41.0 ng/ml rbleptin in plasma were 4.9 ng/ml, 11.22%, -1.396 and 97.8%, respectively. Plasma leptin measured were more than 5.0 ng/ml, which enable multi-species RIA system to investigate plasma leptin in normal growing steers. Body weight resulted to a highly significant second-degree polynomial relationship with plasma leptin (q=0.54, p<0.0001) and plasma IGF-1 (q=0.44, p<0.0001) from 1 to 27.4 monthly ages. However, the second-degree polynomial curve of plasma leptin and IGF-1 differs showing a concave and convex curvilinear relationship, respectively. ADG was not significantly associated to plasma leptin (r=0.06, p>0.05) and plasma IGF=1 (r=0.06, p>0.05) from 1 to 27.4 monthly ages. Low coefficient, but significant associated increase of plasma leptin and IGF-1 (r=0.12, p<0.008) from 1 to 27.4 months was observed. The uncoordinated increases of plasma IGF-1 at growing and plasma leptin at fattening period, may indicate (1) indirect involvement of endogenous IGF-1 on leptin secretion, and (2) IGF-1 level may signify lean and bone accretion while plasma leptin may mirror body fatness across the monthly ages of Holstein steers.

Analysis of Amorphous Carbon Hard Mask and Trench Etching Using Hybrid Coupled Plasma Source

  • Park, Kun-Joo;Lee, Kwang-Min;Kim, Min-Sik;Kim, Kee-Hyun;Lee, Weon-Mook
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.74-74
    • /
    • 2009
  • The ArF PR mask was. developed to overcome the limit. of sub 40nm patterning technology with KrF PR. But ArF PR difficult to meet the required PR selectivity by thin PR thickness. So need to the multi-stack mask such as amorphous carbon layer (ACL). Generally capacitively coupled plasma (CCP) etcher difficult to make the high density plasma and inductively coupled plasma (ICP) type etcher is more suitable for multi stack mask etching. Hybrid Coupled Plasma source (HCPs) etcher using the 13.56MHz RF power for ICP source and 2MHz and 27.12MHz for bias power was adopted to improve the process capability and controllability of ion density and energy independently. In the study, the oxide trench which has the multi stack layer process was investigated with the HCPs etcher (iGeminus-600 model DMS Corporation). The results were analyzed by scanning electron microscope (SEM) and it was found that etching characteristic of oxide trench profile depend on the multi-stack mask.

  • PDF

Dynamic analysis of multi-functional maintenance platform based on Newton-Euler method and improved virtual work principle

  • Li, Dongyi;Lu, Kun;Cheng, Yong;Zhao, Wenlong;Yang, Songzhu;Zhang, Yu;Li, Junwei;Shi, Shanshuang
    • Nuclear Engineering and Technology
    • /
    • v.52 no.11
    • /
    • pp.2630-2637
    • /
    • 2020
  • The structure design of divertor Multi-Functional Maintenance Platform (MFMP) actuated by hydraulic system for China Fusion Engineering Test Reactor (CFETR) was introduced in this paper. The model of MFMP was established according to maintenance requirements. In this paper, Newton-Euler method and the improved virtual work principle were used, the equivalent driving force of each actuator was obtained through the equivalent Jacobian inverse matrix derived from velocity relationship among the components. The accuracy of the model was verified by ADAMS simulation. The stability control of the heavy-duty components driven by hydraulic cylinders based on Newton-Euler method and improved virtual work principle was established.