• Title/Summary/Keyword: Multi lens

Search Result 207, Processing Time 0.031 seconds

Lens Design For Microdisplay System With Multi-Mirrors (마이크로디스플레이시스템에서의 멀티미러를 갖는 렌즈 설계)

  • 김혜경;윤동준;신승연;송문빈;김성호;박광범;최성호;문현찬
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2002.11a
    • /
    • pp.100-101
    • /
    • 2002
  • This paper show lens design and simulation for microdisplay system with two mirror, Lens design optimized consider to spherical aberration, astigmatism, distortion, and chromatic aberration.

  • PDF

Study on The Electron-Beam Optics in The Micro-Column for The Multi-Beam Lithography (다중빔 리소그래피를 위한 초소형 컬럼의 전자빔 광학 해석에 관한 연구)

  • Lee, Eung-Ki
    • Journal of the Semiconductor & Display Technology
    • /
    • v.8 no.4
    • /
    • pp.43-48
    • /
    • 2009
  • The aim of this paper is to describe the development of the electron-beam optic analysis algorithm for simulating the e-beam behavior concerned with electrostatic lenses and their focal properties in the micro-column of the multi-beam lithography system. The electrostatic lens consists of an array of electrodes held at different potentials. The electrostatic lens, the so-called einzel lens, which is composed of three electrodes, is used to focus the electron beam by adjusting the voltages of the electrodes. The optics of an electron beam penetrating a region of an electric field is similar to the situation in light optics. The electron is accelerated or decelerated, and the trajectory depends on the angle of incidence with respect to the equi-potential surfaces of the field. The performance parameters, such as the working distances and the beam diameters are obtained by the computational simulations as a function of the focusing voltages of the einzel lens electrodes. Based on the developed simulation algorithm, the high performance of the micro-column can be achieved through optimized control of the einzel lens.

  • PDF

Design and Fabrication of Multi-Focusing Microlens Array with Different Numerical Apertures by using Thermal Reflow Method

  • Park, Min-Kyu;Lee, Ho Jun;Park, Ji-Sub;Kim, Mugeon;Bae, Jeong Min;Mahmud, Imtiaz;Kim, Hak-Rin
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.1
    • /
    • pp.71-77
    • /
    • 2014
  • We present design and fabrication of a multi-focusing microlens array (MLA) using a thermal reflow method. To obtain multi-focusing properties with different numerical apertures at the elemental lens of the MLA, double-cylinder photoresist (PR) structures with different diameters were made within the guiding pattern with both photolithographic and partial developing processes. Due to the base PR layer supporting the thermal reflow process and the guiding structure, the thermally reflowed PR structure had different radii of curvatures with lens shapes that could be precisely modeled by the initial volume of the double-cylinder PR structures. Using the PR template, the hexagonally packed multi-focusing MLA was made via the replica molding method, which showed four different focal lengths of 0.9 mm, 1.1 mm, 1.6 mm, and 2.5 mm, and four different numerical apertures of 0.1799, 0.2783, 0.3973, and 0.4775.

A Study on the Thermal Stresses of the Glass Lens Mold Using in Progressive GMP Process (순차이송 GMP 방식용 유리렌즈 금형의 열응력에 관한 연구)

  • Chang, S.H.;Lee, Y.M.;Shin, G.H.;Yoon, G.S.;Jung, W.C.;Jung, T.S.;Heo, Y.M.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.289-292
    • /
    • 2007
  • To prevent the damage of glass lens molds and deterioration of glass lenses using in progressive GMP process, a thermal stress and a deformation of the glass lens molds at forming temperature should be considered in the design step. In this study, as a fundamental study to develop a multi cavity mold used in an aspheric glass lens molding, a heat transfer and a thermal stress analysis were carried out for the case of one cavity glass lens mold used in progressive GMP process. Finally, using analysis results, we estimated the thermal stress in a glass lens mold and predicted a modified height of guide ring that determines the forming height of a glass lens.

  • PDF

Design of LCD Backlight Unit Coupled with Micro Fresnel Lens Array (배열형 소형 프레넬 렌즈가 결합된 LCD 백라이트의 설계)

  • Jeong, Man-Ho
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.2
    • /
    • pp.1-7
    • /
    • 2006
  • A light guided plate coupled with the micro Fresnel lens array(MFTA) is designed to improve the efficiency of the LCD backlight unit. Blazed Frenel lens and binary multi-level Fresnel lens are adapted for the MFLA. This type of MFLA can replace the prism sheet and diffuser sheet which are used for the conventional type of the LCD backlight unit. The luminance and uniformity are calculated to verify the performance of the MFLA type LCD backlight unit.

Characterizations of Spherical Luneburg Lens Antennas with Air-gaps and Dielectric Losses

  • Kim, Kang-Wook
    • Journal of electromagnetic engineering and science
    • /
    • v.1 no.1
    • /
    • pp.11-17
    • /
    • 2001
  • In this paper, spherical Luneburg lens antennas have been systematically analyzed using the Eigenfunction Expansion Method (EEM), The developed technique has capability of performing a complete 3-D analysis to characterize the multi-layered dielectric spherical lens with arbitrary permittivity and permeability. This paper describes the analysis technique, and presents the results of the parametric study of Luneburg lens antennas by varying design parameters suoh as the diameter of the lens antenna (up to 80 wavelength), number of spherical shells (up to 30 shells), air-gaps between spherical shells, and dielectric loss of the material. Many representative engineering design curves including the far-field patterns, wide-angle sidelobe characterizations, antenna efficiency have been presented.

  • PDF

Changes of Thin Film Coating on Polymer Lenses with Varying Temperature (온도에 의한 고분자 렌즈의 재질별 코팅 박막의 변화)

  • Noh, Hyeran
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.19 no.1
    • /
    • pp.1-8
    • /
    • 2014
  • Purpose: To observe changes of coatings and lens materials with varying temperature to understand effect of temperature on plastic lens. Methods: In this study, three lenses of different refractive indices (2 of thiourethane oriented lenses, an allyl diglycol carbonate oriented lens) were exposed to high temperature (50, 80, and 100 degree) for 5 hours and changes of individual coating (anti-refractive coating, hard coating, and water repellent coating) were measured. Results: As a result, high-refractive index lenses did not exhibit significant variation of hardness. However, hardness of mid-refractive index lens were decreased when exposed to high temperature and destructions of hard coating layer was inferred. Surface contact angles of lens were decreased with increasing temperature and water repellent coating layer were damaged at higher than 80 degree. Conclusions: Multi including water repellent coatings on all three lenses with different refractive indices were damaged when exposed to at or higher than 80 degree. The degree of changes in mechanical and physical properties were depended on polymer material type.

Large-view-volume Multi-view Ball-lens Display using Optical Module Array (광학 모듈 어레이를 이용한 넓은 시야 부피의 다시점 볼 렌즈 디스플레이)

  • Gunhee Lee;Daerak Heo;Jeonghyuk Park;Minwoo Jung;Joonku Hahn
    • Journal of Broadcast Engineering
    • /
    • v.28 no.1
    • /
    • pp.79-89
    • /
    • 2023
  • A multi-view display is regarded as the most practical technology to provide a three-dimensional effect to a viewer because it can provide an appropriate viewpoint according to the observer's position. But, most multi-view displays with flat shapes have a disadvantage in that a viewer watches 3D images only within a limited front viewing angle. In this paper, we proposed a spherical display using a ball lens with spherical symmetry that provides perfect parallax by extending the viewing zone to 360 degrees. In the proposed system, each projection lens is designed to be packaged into a small modular array, and the module array is arranged in a spherical shape around a ball lens to provide vertical and horizontal parallax. Through the applied optical module, the image is formed in the center of the ball lens, and 3D contents are clearly imaged with the size of about 0.65 times the diameter of the ball lens when the viewer watches them within the viewing window. Therefore, the feasibility of a 360-degree full parallax display that overcomes the spherical aberration of a ball lens and provides a wide field of view is confirmed experimentally.

Fabrication of High-Quality Diffractive-Lens Mold having Submicron Patterns (서브 미크론의 패턴으로 구성된 고효율 회절 렌즈 몰드 제작)

  • Woo, Do-Kyun;Hane, Kazuhiro;Lee, Sun-Kyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.11
    • /
    • pp.1637-1642
    • /
    • 2010
  • In this paper, we present the fabrication of a high-quality diffractive-lens mold having submicron patterns, which is suitable for an ultra-slim optical system. In order to fabricate high-quality diffractive lens with a variety of submicron patterns, the multi-alignment method was used; high-resolution electron-beam lithography and FAB plasma etching were carried out to obtain the patterns. The most important key technology in the multi-alignment method is to reduce alignment error, lithography error, and etching error. In this paper, these major fabrication errors were minimized, and a high-quality diffractive lens with a diameter of $267\;{\mu}m$ (NA = 0.25), minimum pattern width of 226 nm, and thickness of 819 nm was successfully fabricated.

Automatic Focus Control for Assembly Alignment in a Lens Module Process (렌즈 모듈 생산 공정에서 조립 정렬을 위한 자동 초점 제어)

  • Kim, Hyung-Tae;Kang, Sung-Bok;Kang, Heui-Seok;Cho, Young-Joon;Park, Nam-Gue;Kim, Jin-Oh
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.2
    • /
    • pp.70-77
    • /
    • 2010
  • This study proposed an auto focusing method for a multi-focus image in assembling lens modules in digital camera phones. A camera module in a camera phone is composed of a lens barrel, an IR glass, a lens mount, a PCB board and aspheric lenses. Alignment among the components is one of the important factors in product quality. Auto-focus is essential to adjust image quality of an IR glass in a lens holder, but there are two focal points in the captured image due to thickness of IR glass. So, sharpness, probability and a scale factor are defined to find desired focus from a multi-focus image. The sharpness is defined as clarity of an image. Probability and a scale factors are calculated using pattern matching with a registered image. The presented algorithm was applied to a lens assembly machine which has 5 axes, two vacuum chucks and an inspection system. The desired focus can be determined on the local maximum of the sharpness, the probability and the scale factor in the experiment.