• Title/Summary/Keyword: Multi hop Wireless Ad-hoc Networks

Search Result 93, Processing Time 0.04 seconds

Fuzzy Based Multi-Hop Broadcasting in High-Mobility VANETs

  • Basha, S. Karimulla;Shankar, T.N.
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.3
    • /
    • pp.165-171
    • /
    • 2021
  • Vehicular Ad hoc Network (VANET) is an extension paradigm of moving vehicles to communicate with wireless transmission devices within a certain geographical limit without any fixed infrastructure. The vehicles have most important participation in this model is usually positioned quite dimly within the certain radio range. Fuzzy based multi-hop broadcast protocol is better than conventional message dissemination techniques in high-mobility VANETs, is proposed in this research work. Generally, in a transmission range the existing number of nodes is obstacle for rebroadcasting that can be improved by reducing number of intermediate forwarding points. The proposed protocol stresses on transmission of emergency message projection by utilization subset of surrounding nodes with consideration of three metrics: inter-vehicle distance, node density and signal strength. The proposed protocol is fuzzy MHB. The method assessment is accomplished in OMNeT++, SUMO and MATLAB environment to prove the efficiency of it.

Performance Analysis of Multi-hop Wireless Networks under Different Hopping Strategies with Spatial Diversity

  • Han, Hu;Zhu, Hongbo;Zhu, Qi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.10
    • /
    • pp.2548-2566
    • /
    • 2012
  • This paper derives two main end-to-end performance metrics, namely the spatial capacity density and the average end-to-end delay of the multi-hop wireless ad hoc networks with multi-antenna communications. Based on the closed-form expressions of these performance metrics, three hopping strategies, i.e., the closest neighbor, the furthest neighbor and the randomly selected neighbor hopping strategies have been investigated. This formulation provides insights into the relations among node density, diversity gains, number of hops and some other network design parameters which jointly determine network performances, and a method of choosing the best hopping strategy which can be formulated from a network design perspective.

Performance Evaluation of a Enhanced Network Coding Scheme using NS2 (NS2를 이용한 향상된 네트워크 코딩 기법의 성능평가)

  • Kim, Kwan-Woong;Kim, Yong-Kab;Kim, Byun-Gon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.10
    • /
    • pp.2281-2287
    • /
    • 2013
  • Network Coding(NC) is a new paradigm for network communication. In network coding, intermediate nodes create new packets by algebraically combining ingress packets and send it to its neighbor node by broadcast manner. Network Coding has rapidly emerged as a major research area in information theory due to its wide applicability to communication through real networks. Network coding is expected to improve throughput and channel efficiency in the wireless multi-hop network. Prior researches have been carried out to employ network coding to wireless ad-hoc network. In our study, intermediate nodes identify one-hop bidirectional flows for network coding decision. We expect that the proposed scheme shall improve decoding success rate of network coded packet. From the simulation, the proposed network coding scheme achieved better performance in terms of coding gain and packet delivery rate than traditional network coding scheme.

MAC Aware Multi-Channel Routing Protocol for Multi-Interface Ad-Hoc Wireless Networks (다중-인터페이스 애드-혹 무선 네트워크를 위한 MAC 인식 다중-채널 라우팅 프로토콜)

  • Lim, Hunju;Joung, Sookyoung;Lee, Sungwha;Park, Inkap
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.13 no.5
    • /
    • pp.249-258
    • /
    • 2013
  • In multi-hop ad hoc networks, multi-interface multi-channel architecture is being noticing as methodology to improve the effective bandwidth and end-to-end throughput, But since existing routing metrics designed for networks based on single-interface exactly can not reflects the nature of networks based on multi-interface multi-channel, we are not expected the effect of throughput improvement. there had been proposal of MCR that discover high throughput by using metrics such as channel diversity and interface switching cost. however, MCR have an problem that is degraded it's performance in congested networks, because it not reflects the impact of traffic load. in this paper, we propose MAMCR metric, which select high throughput paths under congested conditions by combination MCR with channel access time metric, and conform it's the effect of performance improvement by ns-2 simulation.

On the Formulation and Optimal Solution of the Rate Control Problem in Wireless Mesh Networks

  • Le, Cong Loi;Hwang, Won-Joo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.5B
    • /
    • pp.295-303
    • /
    • 2007
  • An algorithm is proposed to seek a local optimal solution of the network utility maximization problem in a wireless mesh network, where the architecture being considered is an infrastructure/backbone wireless mesh network. The objective is to achieve proportional fairness amongst the end-to-end flows in wireless mesh networks. In order to establish the communication constraints of the flow rates in the network utility maximization problem, we have presented necessary and sufficient conditions for the achievability of the flow rates. Since wireless mesh networks are generally considered as a type of ad hoc networks, similarly as in wireless multi-hop network, the network utility maximization problem in wireless mesh network is a nonlinear nonconvex programming problem. Besides, the gateway/bridge functionalities in mesh routers enable the integration of wireless mesh networks with various existing wireless networks. Thus, the rate optimization problem in wireless mesh networks is more complex than in wireless multi-hop networks.

Throughput and Delay of Single-Hop and Two-Hop Aeronautical Communication Networks

  • Wang, Yufeng;Erturk, Mustafa Cenk;Liu, Jinxing;Ra, In-ho;Sankar, Ravi;Morgera, Salvatore
    • Journal of Communications and Networks
    • /
    • v.17 no.1
    • /
    • pp.58-66
    • /
    • 2015
  • Aeronautical communication networks (ACN) is an emerging concept in which aeronautical stations (AS) are considered as a part of multi-tier network for the future wireless communication system. An AS could be a commercial plane, helicopter, or any other low orbit station, i.e., Unmanned air vehicle, high altitude platform. The goal of ACN is to provide high throughput and cost effective communication network for aeronautical applications (i.e., Air traffic control (ATC), air traffic management (ATM) communications, and commercial in-flight Internet activities), and terrestrial networks by using aeronautical platforms as a backbone. In this paper, we investigate the issues about connectivity, throughput, and delay in ACN. First, topology of ACN is presented as a simple mobile ad hoc network and connectivity analysis is provided. Then, by using information obtained from connectivity analysis, we investigate two communication models, i.e., single-hop and two-hop, in which each source AS is communicating with its destination AS with or without the help of intermediate relay AS, respectively. In our throughput analysis, we use the method of finding the maximum number of concurrent successful transmissions to derive ACN throughput upper bounds for the two communication models. We conclude that the two-hop model achieves greater throughput scaling than the single-hop model for ACN and multi-hop models cannot achieve better throughput scaling than two-hop model. Furthermore, since delay issue is more salient in two-hop communication, we characterize the delay performance and derive the closed-form average end-to-end delay for the two-hop model. Finally, computer simulations are performed and it is shown that ACN is robust in terms of throughput and delay performances.

Analysis architecture of embedded operating systems for wireless sensor network (무선 센서 네트워크 운영체제 기술 동향 분석)

  • Kang, Jeong-Hoon;Yoo, Jun-Jae;Yoon, Myung-Hun;Lee, Myung-Soo;Lim, Ho-Jung;Lee, Min-Goo;Hwang, Sung-Il
    • Proceedings of the KIEE Conference
    • /
    • 2006.04a
    • /
    • pp.177-179
    • /
    • 2006
  • This paper presents an analysis architecture of embedded operating systems for wireless sensor network. Wireless multi-hop sensor networks use battery-operated computing and sensing device. We expect sensor networks to be deployed in an ad hoc fashion, with very high energy constraints. These characteristics of multi-hop wireless sensor networks and applications motivate an operating system that is different from traditional embedded operating system. These days new wireless sensor network embedded operating system come out with some advances compared with previous ones. The analysis is focusing on understanding differences of dominant wireless sensor network OS, such as TinyOS 2.0 with TinyOS 1.x.

  • PDF

A Study of Guarantee Technique Using Buffer Node in Ad Hoc Network (Ad Hoc 망에서 버퍼 노드를 이용한 QoS 보장 기법에 관한 연구)

  • 김관중
    • Journal of the Korea Society for Simulation
    • /
    • v.12 no.4
    • /
    • pp.73-81
    • /
    • 2003
  • An Ad Hoc network is a dynamic multi-hop wireless network that is established by a group of mobile hosts on a shared wireless channel by virtue of their proximity to each other. Since wireless transmissions are locally broadcast in the region of the transmitting host, hosts that are in close proximity can hear each other and are said to be neighbors. The transitive closure of the neighborhood of all the hosts in the set of mobile hosts under consideration forms an Ad Hoc network. Thus, each host is potentially a router and it is possible to dynamically establish routes by chaining together a sequence of neighboring hosts from a source to a destination in the Ad Hoc network. In a network, various real-time services require the network to guarantee the Quality of Services provided to the receiver. End-to-end QoS can be provided most efficiently when each layer of the protocol stack translates the requirements of the application into layer classified requirements and satisfies them. In this study, a mechanism to guarantee the QoS in Ad Hoc networks with buffer nodes is proposed. They effectively prevent traffic congestion and yield better transmission rate. In this way QoS is enhanced.

  • PDF

An Enhanced Broadcasting Algorithm in Wireless Ad hoc Networks (무선 ad hoc 네트워크를 위한 향상된 방송 알고리즘)

  • Kim, Kwan-Woong;Bae, Sung-Hwan;Kim, Dae-Ik
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.10A
    • /
    • pp.956-963
    • /
    • 2008
  • In a multi-hop wireless ad hoc network broadcasting is an elementary operation to support route discovery, address resolution and other application tasks. Broadcasting by flooding may cause serious redundancy, contention, and collision in the network which is referred to as the broadcast storm problem. Many broadcasting schemes have been proposed to give better performance than simple flooding in wireless ad hoc network. How to decide whether re-broadcast or not also poses a dilemma between reachability and efficiency under different host densities. In this paper, we propose enhanced broadcasting schemes, which can reduce re-broadcast packets without loss of reachability. Simulation results show that proposed schemes can offer better reachability as well as efficiency as compared to other previous schemes.

The Throughput Order of Multicast Traffics with Physical-Layer Network Coding in Random Wireless Ad Hoc Networks

  • Chen, Chen;Bai, Lin;He, Jianhua;Xiang, Haige;Choi, Jin-Ho
    • Journal of Communications and Networks
    • /
    • v.13 no.3
    • /
    • pp.214-220
    • /
    • 2011
  • This paper attempts to address the effectiveness of physical-layer network coding (PNC) on the throughput improvement for multi-hop multicast in random wireless ad hoc networks (WAHNs). We prove that the per session throughput order with PNC is tightly bounded as ${\Theta}((n\sqrt{m}R(n))^{-1})$ if $m=(R^{-2}(n))$, where n is the total number of nodes, R(n) is the communication range, and m is the number of destinations for each multicast session. We also show that per-session throughput order with PNC is tight bounded as ${\Theta}(n^{-1})$, when $m={\Omega}(R^{-2}(n))$. The results of this paper imply that PNC cannot improve the throughput order of multicast in random WAHNs, which is different from the intuition that PNC may improve the throughput order as it allows simultaneous signal access and combination.