• Title/Summary/Keyword: Multi control

Search Result 5,887, Processing Time 0.029 seconds

Multi-Valued Decision Making for Transitional Stochastic Event: Determination of Sleep Stages Through EEG Record

  • Nakamura, Masatoshi;Sugi, Takenao
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.4 no.3
    • /
    • pp.239-243
    • /
    • 2002
  • Multi-valued decision making for transitional stochastic events was newly derived based on conditional probability of knowledge database which included experts'knowledge and experience. The proposed multi-valued decision making was successfully adopted to the determination of the five levels of the vigilance of a subject during the EEG (electroencephalogram) recording; awake stage (stage W), and sleep stages (stage REM (rapid eye movement), stage 1, stage 2, stage $\sfrac{3}{4}$). Innovative feature of the proposed method is that the algorithm of decision making can be constructed only by use of the knowledge database, inspected by experts. The proposed multi-valued decision making with a mathematical background of the probability can also be applicable widely, in industries and in other medical fields for purposes of the multi-valued decision making.

Design of Multi-loop PID Controllers Based on the Generalized IMC-PID Method with Mp Criterion

  • Vu Truong Nguyen Luan;Lee Jie-Tae;Lee Moon-Yong
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.2
    • /
    • pp.212-217
    • /
    • 2007
  • A new method of designing multi-loop PID controllers is presented in this paper. By using the generalized IMC-PID method for multi-loop systems, the optimization problem involved in finding the PID parameters is efficiently simplified to find the optimum closed-loop time constant in a reduced search space. A weighted sum Mp criterion is proposed as a performance cost function to cope with both the performance and robustness of a multi-loop control system. Several illustrative examples are included to demonstrate the improved performance of the multi-loop PID controllers obtained by the proposed design method.

Processing Time Optimization of an Electronic Stability Control system design Using Multi-Cores for AURIX TC 275 (AURIX TC 275에서 멀티코어를 이용한 Electronic Stability Control의 수행시간 최적화)

  • Jang, Hong-Soon;Cho, Young-Hwan;Jeong, Gu-Min
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.14 no.5
    • /
    • pp.385-393
    • /
    • 2021
  • This study proposes a multi-core-based controller design for an ESC(Electronic Stability Control) system in an automotive multi-core processor. Considering the architectures of an automotive multi-core processor and an ESC system, the overall execution time has been optimized for multi-core platforms. The function module assignment, synchronization between cores, and memory assignment for core-dependent variables in automotive multi-core systems are evaluated. The ESC controller comprising five function modules is used herein. Based on the proposed design, the single-core controller is extended to multi-core controllers. Using multi-core optimization methods, such as function module assignment, semaphore, interrupt awakening, and variable assignment over cores, the ESC system is redesigned to a multi-core controller. Experimental results reveal that the execution time for the multi-core processor is reduced by 59.7% compared with that for the single-core processor.

Design and analysis of a control system for a multi-magnet levitation system

  • Kweon, Soon-Man;Kim, Seog-Joo;Kim, Jong-Moon;Kim, Kook-Hun;Kim, Yong-Joo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10b
    • /
    • pp.1332-1336
    • /
    • 1990
  • This paper deals with some analytical and experimental aspects to control a multi-magnet suspended vehicle. Because the response of a multi-magnet vehicle shows mutually coupled interaction, an analytical description of the vehicle dynamics is necessary. For numerical computations, a linearized modelling of vehicle dynamics is dicussed and computer simulation is carried out. And for the experiment, a test vehicle suspended by four magnets has been made and investigated by local control of each magnet. Two algorithms by PID and state feedback control law are used and compared with each other. Some kinds of disturbance characteristics and coupling effects of the width change of the test vehicle are experimented.

  • PDF

Control of Multi-Joint Manipulator Using PD-Sliding Mode (PD-슬라이딩 모드를 이용한 다 관절 매니퓰레이터 제어)

  • Son, Hyun-Seok;Lee, Won-Ki;Lee, Jang-Myung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.12
    • /
    • pp.1286-1293
    • /
    • 2008
  • This paper proposes a realization of robust trajectory tracking for an industrial robot by using PD-sliding mode hybrid control. The PD control has a good performance in the transient period while the sliding mode control has robustness against the system uncertainties. The proposed control method is proposed for the control of a multi-joint robot by taking advantages of both the PD and sliding mode controls. The embodiment of distributed controllers that drive 4-DOF axes has evaluated through experiments with the multi-joint robot AT1. The PD-sliding mode algorithm which is proposed in this paper shows a good performance in the transient period and robustness against disturbances and This paper shows accuracy of end-effector.

A Closed-loop-control System for Filling Balance in the Hot Runner Mold with Multi-Cavities (다수 캐비티를 갖는 핫러너 금형에서의 균형충전을 위한 자동제어시스템)

  • Jang, Min-Kyu;Jo, Il-Kyu;Lee, Ok-Seong;Jeong, Yeong-Deug
    • Design & Manufacturing
    • /
    • v.9 no.1
    • /
    • pp.23-26
    • /
    • 2015
  • For mass production of plastics, injection molds have multi-cavities. However, filling imbalance between cavity to cavity always has occurred in multi-cavities mold, and this has caused low quality of plastics part. In this study, the closed-loop-control system which can control temperature of hot manifold and nozzle in hot runner mold for filling balance has been suggested, and a series of experiment about difference of filling time and weight in cavity-to-cavity was conducted. As a result of using closed-loop-control system, a remarkable improvement in reducing filling imbalance was confirmed.

  • PDF

Sampled-Data MPC for Leader-Following of Multi-Mobile Robot System (다중모바일로봇의 리더추종을 위한 샘플데이타 모델예측제어)

  • Han, Seungyong;Lee, Sangmoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.2
    • /
    • pp.308-313
    • /
    • 2018
  • In this paper, we propose a sampled-data model predictive tracking control deign for leader-following control of multi-mobile robot system. The error dynamics of leader-following robots is modeled as a Linear Parameter Varying (LPV) model. Also, the Lyapunov function is presented to guarantee stability of the networked control system. Based on the stabilization condition using a quadratic Lyapunov function approach, model predictive sampled-data controller is designed. Finally, the leader-following control of multi mobile robots is simulated to show effectiveness of the proposed method.

A Study of Vibration Control of a Slender Structure Using a Multi-Degree-of-Freedom Manipulator (다 자유도 운동장치를 이용한 세장구조물의 진동제어 연구)

  • Kim, Nak-In;Lee, Jong-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.8
    • /
    • pp.1227-1234
    • /
    • 2001
  • A multi d.o.f robotic manipulator is considered for multi-axis vibration control of a slender structure, using the concept of the flow source based vibration control. In order not to cause the motion saturation of the manipulator system, a hybrid dynamics associated with the flexible and desired manipulator error dynamics is also modeled as the control object. It is numerically shown that the flexible vibrations and the base motions of a test structure can be effectively controlled with the proposed hybrid dynamics.

Fast Processing System for Motion Control of Multi-body Robots (다관절 로봇용 고속 제어보드 개발 및 제어)

  • Sim, Jae-Ik;Kwon, O-Hung;kim, Tae-Sung;Park, Jong-Hyeon
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.951-956
    • /
    • 2007
  • This paper suggests a high-speed control method which is suitable for multi-joint robots using a real-time stand-alone controller for general-purpose. The fast processing controller consists of a PCI Interface Board and 2-axe PWM drivers. The PCI Interface Board consists of 32-channel PWM output ports, 32-channel Encoder Counters, 32-channel A/D Converters and 48-channel Digital I/O ports, and all the I/O data transmissions are completed within 1ms. And The 2-axe PWM driver can be redesigned easily in order to embed in each link. Experimental implementations show that the high-speed control method can be used for the real-time control which is essential to controlling of multi-body robots such as humanoid robots. Especially, it is efficient for realizing the model-based motion control in demand of much calculation time by the high I/O communication speed.

  • PDF

A Multi-target Tracking Algorithm for Application to Adaptive Cruise Control

  • Moon Il-ki;Yi Kyongsu;Cavency Derek;Hedrick J. Karl
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.9
    • /
    • pp.1742-1752
    • /
    • 2005
  • This paper presents a Multiple Target Tracking (MTT) Adaptive Cruise Control (ACC) system which consists of three parts; a multi-model-based multi-target state estimator, a primary vehicular target determination algorithm, and a single-target adaptive cruise control algorithm. Three motion models, which are validated using simulated and experimental data, are adopted to distinguish large lateral motions from longitudinally excited motions. The improvement in the state estimation performance when using three models is verified in target tracking simulations. However, the performance and safety benefits of a multi-model-based MTT-ACC system is investigated via simulations using real driving radar sensor data. The MTT-ACC system is tested under lane changing situations to examine how much the system performance is improved when multiple models are incorporated. Simulation results show system response that is more realistic and reflective of actual human driving behavior.