Park, Eunsoo;Yun, Yongji;Kim, Hyoungrae;Lee, Jonghwan;Ki, Hoyong;Lee, Chulhee;Kim, Hakil
Journal of Institute of Control, Robotics and Systems
/
v.19
no.1
/
pp.15-26
/
2013
This paper proposes a classification method of parallel, vertical parking states and pillars for parking assist system using ultrasonic sensors. Since, in general parking space detection module, the compressed amplitude of ultrasonic data are received, the analysis of them is difficult. To solve these problems, in preprocessing state, symmetric transform and noise removal are performed. In feature extraction process, four features, standard deviation of distance, reconstructed peak, standard deviation of reconstructed signal and sum of width, are proposed. Gaussian fitting model is used to reconstruct saturated peak signal and discriminability of each feature is measured. To find the best combination among these features, multi-class SVM and subset generator are used for more accurate and robust classification. The proposed method shows 92 % classification rate and proves the applicability to parking space detection modules.
Kim, Chung-Il;Cho, Yongjang;Jung, Seungwon;Rew, Jehyeok;Hwang, Eenjun
KSII Transactions on Internet and Information Systems (TIIS)
/
v.14
no.8
/
pp.3384-3398
/
2020
In recent years, as the environment has become an important issue in dealing with food, energy, and urban development, diverse environment-related applications such as environmental monitoring and ecosystem management have emerged. In such applications, automatic classification of animals using video or sound is very useful in terms of cost and convenience. So far, many works have been done for animal sounds classification using artificial intelligence techniques such as a convolutional neural network. However, most of them have dealt only with the sound of a specific class of animals such as bird sounds or insect sounds. Due to this, they are not suitable for classifying various types of animal sounds. In this paper, we propose a sound classification scheme based on a multi-feature network for classifying sounds of multiple species of animals. To do that, we first collected multiple animal sound datasets and grouped them into classes. Then, we extracted their audio features by generating mixed records and used those features for training. To evaluate the effectiveness of our scheme, we constructed an animal sound classification model and performed various experiments. We report some of the results.
The human chromosome analysis is widely used to diagnose genetic disease and various congenital anomalies. Many researches on automated chromosome karyotype analysis has been carried out, some of which produced commercial systems. However, there still remains much room or improving the accuracy of chromosome classification. In this paper, We propose an optimal pattern classifier by neural network to improve the accuracy of chromosome classification. The proposed pattern classifier was built up of multi-step multi-layer neural network(MMANN). We reconstructed chromosome image to improve the chromosome classification accuracy and extracted three morphological features parameters such as centromeric index(C.I.), relative length ratio(R.L.), and relative area ratio(R.A.). This Parameters employed as input in neural network by preprocessing twenty human chromosome images. The experiment results show that the chromosome classification error is reduced much more than that of the other classification methods.
Journal of Institute of Control, Robotics and Systems
/
v.22
no.4
/
pp.253-265
/
2016
We propose an obstacle classification method using multi-decision factors and decision sections based on Single 2D LiDAR. The existing obstacle classification method based on single 2D LiDAR has two specific advantages: accuracy and decreased calculation time. However, it was difficult to classify obstacle type, and therefore accurate path planning was not possible. To overcome this problem, a method of classifying obstacle type based on width data was proposed. However, width data was not sufficient to enable accurate obstacle classification. The proposed algorithm of this paper involves the comparison between decision factor and decision section to classify obstacle type. Decision factor and decision section was determined using width, standard deviation of distance, average normalized intensity, and standard deviation of normalized intensity data. Experiments using a real autonomous vehicle in a real environment showed that calculation time decreased in comparison with 2D LiDAR-based method, thus demonstrating the possibility of obstacle type classification using single 2D LiDAR.
Recently, large-scale language models (LPLM) have been shown state-of-the-art performances in various tasks of natural language processing including intent classification. However, fine-tuning LPLM requires much computational cost for training and inference which is not appropriate for dialog system. In this paper, we propose compressed intent classification model for multi-agent in low-resource like CPU. Our method consists of two stages. First, we trained sentence encoder from LPLM then compressed it through knowledge distillation. Second, we trained agent-specific adapter for intent classification. The results of three intent classification datasets show that our method achieved 98% of the accuracy of LPLM with only 21% size of it.
Recently, with the advent of knowledge based society where information and knowledge make values, patents which are the representative form of intellectual property have become important, and the number of the patents follows growing trends. Thus, it needs to classify the patents depending on the technological topic of the invention appropriately in order to use a vast amount of the patent information effectively. IPC (International Patent Classification) is widely used for this situation. Researches about IPC automatic classification have been studied using data mining and machine learning algorithms to improve current IPC classification task which categorizes patent documents by hand. However, most of the previous researches have focused on applying various existing machine learning methods to the patent documents rather than considering on the characteristics of the data or the structure of patent documents. In this paper, therefore, we propose to use two structural fields, technical field and background, considered as having impacts on the patent classification, where the two field are selected by applying of the characteristics of patent documents and the role of the structural fields. We also construct multi-label classification model to reflect what a patent document could have multiple IPCs. Furthermore, we propose a method to classify patent documents at the IPC subclass level comprised of 630 categories so that we investigate the possibility of applying the IPC multi-label classification model into the real field. The effect of structural fields of patent documents are examined using 564,793 registered patents in Korea, and 87.2% precision is obtained in the case of using title, abstract, claims, technical field and background. From this sequence, we verify that the technical field and background have an important role in improving the precision of IPC multi-label classification in IPC subclass level.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
1997.10a
/
pp.419-423
/
1997
This paper is concerned about the classification of objects together with muti-attributes such as remote sensing image data by using tolerance rough set. To produce more reliable relations from given attributes in the data, we define new similarity measures by using scaling. Our Method will be applied to classify multi-spectral image data.
In this paper, we proposed the multi-step multi-layer artificial neural network(MMANN) to classify the chromosome, Which is used as a chromosome pattern classifier after learning. We extracted three chromosome morphological feature parameters such as centromeric index, relative length ratio, and relative area ratio by means of preprocessing method from ten chromosome images. The feature parameters of five chromosome images were used to learn neural network and the rest of them were used to classify the chromosome images. The experiment results show that the chromosome classification error is reduced much more, comparing with less feature parameters than that of the other researchers.
In the process of the sonar image textures produced, the orientation and scale factors are very significant. However, most of the related methods ignore the directional information and scale invariance or just pay attention to one of them. To overcome this problem, we apply Gabor wavelet to extract the features of sonar images, which combine the advantages of both the Gabor filter and traditional wavelet function. The mother wavelet is designed with constrained parameters and the optimal parameters will be selected at each orientation, with the help of bandwidth parameters based on the Fisher criterion. The Gabor wavelet can have the properties of both multi-scale and multi-orientation. Based on our experiment, this method is more appropriate than traditional wavelet or single Gabor filter as it provides the better discrimination of the textures and improves the recognition rate effectively. Meanwhile, comparing with other fusion methods, it can reduce the complexity and improve the calculation efficiency.
Proceedings of the Korean Society of Computer Information Conference
/
2022.07a
/
pp.29-30
/
2022
Curriculum learning은 딥러닝의 성능을 향상시키기 위해 사람의 학습 과정과 유사하게 일종의 'curriculum'을 도입해 모델을 학습시키는 방법이다. 대부분의 연구는 학습 데이터 중 개별 샘플의 난이도를 기반으로 점진적으로 모델을 학습시키는 방안에 중점을 두고 있다. 그러나, coarse-to-fine 메카니즘은 데이터의 난이도보다 학습에 사용되는 class의 유사도가 더욱 중요하다고 주장하며, 여러 난이도의 auxiliary task를 차례로 학습하는 방법을 제안했다. 그러나, 이 방법은 혼동행렬 기반으로 class의 유사성을 판단해 auxiliary task를 생성함으로 다중 레이블 분류에는 적용하기 어렵다는 한계점이 있다. 따라서, 본 논문에서는 multi-label 환경에서 multi-class와 binary task를 생성하는 방법을 제안해 coarse-to-fine 메카니즘 적용을 위한 방안을 제시하고, 그 결과를 분석한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.