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Abstract 
 

In recent years, as the environment has become an important issue in dealing with food, 
energy, and urban development, diverse environment-related applications such as 
environmental monitoring and ecosystem management have emerged. In such applications, 
automatic classification of animals using video or sound is very useful in terms of cost and 
convenience. So far, many works have been done for animal sounds classification using 
artificial intelligence techniques such as a convolutional neural network. However, most of 
them have dealt only with the sound of a specific class of animals such as bird sounds or insect 
sounds. Due to this, they are not suitable for classifying various types of animal sounds. In this 
paper, we propose a sound classification scheme based on a multi-feature network for 
classifying sounds of multiple species of animals. To do that, we first collected multiple 
animal sound datasets and grouped them into classes. Then, we extracted their audio features 
by generating mixed records and used those features for training. To evaluate the effectiveness 
of our scheme, we constructed an animal sound classification model and performed various 
experiments. We report some of the results. 
 
 
Keywords: Environmental monitoring, Animal sound classification, Convolutional neural 
networks 
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1. Introduction 

In recent years, as the environment has become an important issue in dealing with food, 
energy, and urban development, diverse environment-related applications such as 
environmental monitoring and ecosystem management have emerged. In such applications, 
automatic classification or recognition of animals using video or sound is very effective 
because manual classification is expensive and time-consuming and requires specialized 
domain knowledge.  

Even though animal sound classification (ASC) has been an interesting topic in signal 
processing area, it can also be used effectively for environmental monitoring or biodiversity 
studies [1]. For example, birds sound classification is effective for checking environmental 
changes quickly because birds have been widely used as biological indicators in the ecological 
research [2]. Moreover, insects sound classification can be used for tracking pests and 
infectious diseases [3] and for estimating food production around the world [4]. Further, 
anurans sound classification is a useful tool for assessing the condition of wetlands, which are 
very important for biodiversity [5]. 

Traditional ASC models usually depend on handcrafted features such as log-mel feature, 
mel frequency cepstral coefficient (MFCC), delta MFCC and delta-delta MFCC [6, 7, 8]. 
However, these features showed poor classification performance on support vector machines 
(SVMs) [9] and k-nearest neighbor (kNN) classifiers [10]. Recently, several convolutional 
neural network (CNN)-based models have been proposed to accurately classify animal sounds 
[11, 12, 13]. Unlike traditional ASC models, these deep learning models can extract 
higher-level features that are invariant to local spectral and temporal shifts [13]. 

Nevertheless, CNN-based classification models suffer from a lack of generality. That is, 
such models showed good performance for their own dataset, but for other datasets, they often 
showed poor performance. For instance, even though Warblr and TREE datasets [14] are 
usually used to train and evaluate animal sound classification models, they only contain data 
records of birds living in the United Kingdom and the Chernobyl regions, respectively. Hence, 
they are not suitable for training models for classifying various kinds of animal sounds. 

The most intuitive way to solve this problem is to train a classification model with multiple 
datasets [15]. However, in ASC, this methodology has not attracted much attention so far due 
to diverse reasons such as lack of dataset for such purpose. In this paper, we propose a new 
model that can classify various types of animal sounds using multiple datasets. To do this, we 
first collected diverse open datasets to increase the generality of the sound classification model 
and defined new classes by merging or separating existing classes in the datasets. Second, we 
applied the oversampling strategy to mitigate the data imbalance problem caused by merging 
and separating classes. Finally, we built a multi-feature network-based model for various types 
of animal sound classification. To improve the classification performance, we trained the 
oversampled raw sounds and short-term Fourier transformed (STFT) spectrograms feature 
together and evaluated the sound classification performance of our proposed model through 
various experiments. 

The rest of this paper is organized as follows. In Section 2, we present a literature review. In 
Section 3, we briefly describe animal sound datasets, data preprocessing for constructing a 
classification model, and the structure of our proposed model. We present various experiments 
we conducted and some of the results in Section 4. Lastly, in Section 5, we discuss the 
conclusion. 
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2. Related Work 
Many previous works for animal sound classification are related to public challenges such as 
bird sound detection because high-performance models in public challenges are believed to be 
useful in ecological applications [14, 15]. In the public challenges, participants were informed 
of the problem to solve with some preselected datasets for training and evaluating their 
algorithm. Here, we introduce some of the challenges.  

The Bird Detection in the Audio 2016 (BDA) challenge was to distinguish whether there 
was a bird sound in a given sound file or not [14]. In the challenge, the Warblr and 
FreeField1010 datasets were given as training datasets and the Chernobyl dataset as an 
evaluation dataset. The Warblr dataset is a crowd-sourced bird sound dataset biased towards 
population centers across the UK in 2015-2016. This challenge extracted only the birds' sound 
tagged data from the Freefield1010 dataset, which is a subset of the crowd-sourced dataset, 
Freesound. On the other hand, the Chernobyl dataset has sounds collected from various 
Chernobyl Exclusion Zones and only bird sounds in the dataset were used in the challenge. 

DCASE 2018 Bird Audio Detection (BAD) challenge was the most recent public challenge 
dealing with mixed datasets [15]. This challenge aimed to improve the generality of the 
classification algorithms compared to BDA 2016 challenge by using five datasets. In this 
challenge, the Warblr, FreeField1010, and BirdVox DCASE 20k datasets were given as 
training datasets, and the Chernobyl and PolandNFC datasets as evaluation datasets. 

Even though the BDA 2016 and BAD 2018 challenges used more than two datasets to 
improve generality, they both focused on detecting bird sounds only. Hence, they might not be 
suitable for classifying comprehensive animal sounds. 

In a recent study, they attempted to classify various types of animals by using real 
recordings, eBird dataset, and Korea Wild Animal Sound Dictionary [16]. They presented a 
model that combines three CNN models, each trained to classify only one of the anurans, 
insects, and birds. They did not consider the absence of animal sounds in a given input sound.  

To the best of our knowledge, few works have been conducted to classify the sounds of 
various animal species. In this paper, we present a sound classification model that 
distinguishes between different animal species. In particular, by considering additional non- 
 

Table 1. Animal sound classification works based on multiple datasets. 
Works Training datasets Test datasets 

The Bird Detection in the 
Audio 2016 (BDA) [14] 

Warblr 
FreeField1010 Chernobyl 

DCASE 2018 Bird Audio 
Detection [15] 

Warblr 
FreeFiled1010 

BirdVox DCASE 20k 

Chernobyl 
PolandNFC 

Ko et al. [16]* 

Anuran recording 
Bird recording 

eBird 
Korea Wild Animal Sound Dictionary 

Ours* 

Anuran recording 
Bird recording 

eBird 
Korea Wild Animal Sound Dictionary 

Freesound 
*: These studies used a k-fold cross validation method in the experiments. 
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bio-acoustic dataset, our model can determine whether there is an animal sound in the input or 
not. Aforementioned works and their datasets including ours, are organized in Table 1. 

3. Methodology 
In this section, we first describe the datasets we used for constructing our model. Then, we 
present the classes that we made for animal sound classification and the preprocessing steps to 
combine those datasets. Finally, we describe the overall structure of our classification model. 

3.1 Datasets 
In this paper, we consider four datasets, each containing anuran sounds, bird sounds, insect 
sounds, and the Freesound [17]. Figs. 1 and 2 show the number of classes (species) contained 
in each dataset and their total sound length in seconds, respectively. The first dataset contains 
anuran sounds recorded at 44.1 kHz, mono, 16-bit resolution in the natural habitat of each 
species. In the recorded sound, the sections in which the target sound was distorted by other 
sounds such as wind and non-target species, were removed for data integrity. 

The second dataset contains sounds of birds and distorted sections were also removed in the 
same way as in the first dataset. Further, we collected additional bird sounds from eBird [18]. 
However, as all the data on the website were labeled with the collector's voice, we manually 
removed the human voices in the sound data for data integrity. 

The third dataset contains insect sounds that were collected from the Korea Wildlife 
Dictionary published by the National Institute of Biological Resources. In particular, we used 
the orthoptera including crickets and grasshoppers. 

The last dataset is the Freesound dataset used in the DCASE 2018 task 2 challenge [19]. 
This dataset consists of 39 classes of non-bio acoustic sounds and 2 classes of bio-acoustic 
sounds (bark, meow). The purpose of non-bio acoustic sounds is to filter out user inputs that 
are not animal sound. To summarize, we collected a total of 113 classes (species) of animal 
sounds from four datasets and 39 classes of non-bio-acoustic sounds. 
 

 
Fig. 1. Number of classes in each dataset. 
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Fig. 2. Total recording length of each dataset. 
 

3.2 Class Definition and Loss 
To classify various types of animal sounds, we perform two different classifications in 
sequence. The first is the binary classification to filter out user input without animal sound by 
using bio and non-bio classes. The second is the animal sound classification for user input by 
using five different animal species. We first describe these two classifications briefly with 
their loss functions. 

One of the basic tasks in ASC is to determine whether the animal sound of interest exists in 
the sound collection or not [20]. The most common method of determining the presence of 
bio-acoustic sounds is to consider this problem as a binary classification task that decides 
whether the given sound contains bio-acoustic sounds or not. More formally, let Ci be the class 
indicator that represents whether the input sound is contained in class i and li be the classifier’s 
output which represents the probability that the input sound is contained in class i. In this case, 
the loss of the binary classification task can be defined as follows: 
 

ℒ = −�𝐶𝐶𝑖𝑖 ∗ log (𝑙𝑙𝑖𝑖)
2

𝑖𝑖=1

 

 

(1) 

To perform the binary classification task, we consider 113 classes of bio-acoustic sounds as 
a bio-acoustic class and 39 classes of non-bio-acoustic sounds as a non-bio-acoustic class. 
Based on these two distinct classes, we determine whether the input sound is bio-acoustic or 
not. 

In the second classification, we determine the animal species (dataset) to which the input 
sound corresponds. In this paper, we consider five different animal species even though two of 
them belong to the same dataset. As mentioned earlier, each dataset has regional 
characteristics. In particular, anuran, bird, and insect datasets contain their unique regional 
characteristics and animal-class information. Therefore, unlike the binary classification in the 
first step, it is necessary to merge or separate dataset groups. Since we need to recognize one 
dataset only for the input sound, we apply a softmax function. 
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ℒ = −�𝐶𝐶𝑖𝑖 ∗ log (
𝑒𝑒𝑙𝑙𝑖𝑖

∑ 𝑒𝑒𝑙𝑙𝑖𝑖5
𝑗𝑗=1

)
5

𝑖𝑖=1

 (2) 

 

3.3 Preprocessing 
As you can see in Figs. 1 and 2, four datasets have different total recording length, and sound 
files in the dataset also have a different recording length. According to [21], we generated the 
records of each class by the record length of the class with the longest record to avoid 
overfitting caused by the data imbalance problem. Fig. 3 shows the procedure of 
oversampling. 
 

 
Fig. 3. Oversampling process. 

 
That is, for two record files xa and xb in the same class, two randomly selected starting points 

in time i and j, and a random variable r with a uniform distribution in the range (0, 1), an 
augmented data mix(xai, xbj, r) can be defined by Equation 3. 
 

mix�xai, xbj, r� = 𝑟𝑟𝑥𝑥𝑎𝑎 + (1 − 𝑟𝑟)𝑥𝑥𝑏𝑏 (3) 

 
After generation, we extracted multi-features from the record files. In [21], they observed 

that raw data and log-mel based features such as log-mel, MFCC, and delta-MFCC could 
capture diverse patterns of a given sound. Based on this observation, these Fourier-based mel 
features were used in several state-of-art sound classification schemes [22,23,24]. Moreover, 
in [25], the authors proposed a classification model that utilizes raw data and log-mel STFT 
spectrogram as multi-feature inputs and compared their model with other CNN-based 
classification models that used one of them only. Since then, additional multi-feature based 
models were proposed for sound classification with good performance [22, 23]. In this study, 
we experimented with all the four features for constructing and training the classification 
model [22]. 

Our model requires two input variables: waves and STFT spectrograms. Hence, to obtain 
two input variables, we performed the following preprocessing steps: 
 

1. Chunk the audio waveform into non-overlapping segments of 3.84s, which gives 
44.1k × 3.84 samples. 
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2. Calculate both the STFT spectrogram with 1,024 FFT points and hop-lengths of 
10ms. 

3.  Scale all the STFT as (256 × 192).  
 

More details can be found in [22]. 

3.4 Architecture of Our Model 
Fig. 4 shows the overall architecture of our classification model. Our model utilizes both raw 
audio and its STFT spectrogram. Blue boxes and green boxes represent a 1-dimensional (1-D) 
convolutional neural network and a 2-dimensional (2-D) convolutional neural network, 
respectively. The end of our model consists of two 2-D convolutional neural networks and two 
fully connected networks to efficiently infer each class. 
 

 
Fig. 4. The architecture of our model. 

 
We modified the model mentioned in Section 3.3. Given a single 1-D waveform xraw, a 

single STFT xSTFT, 1-D convolution 1D_Conv, and 2-D convolution 2D_Conv, features of 
waveform Fwaveform and features of STFT FSTFT are calculated by the equations (4) and (5). 
 

𝐹𝐹𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 = 2𝐷𝐷_𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶�1𝐷𝐷_𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑥𝑥𝑟𝑟𝑟𝑟𝑟𝑟)�  (5) 
 

𝐹𝐹𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 2𝐷𝐷_𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑥𝑥𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆) (6) 
 
We used a window size of 3×3 for 2-D convolution, and larger filters (128, 64, and 16) for 1-D 
convolution. All convolutions were used with batch normalization and rectified linear unit 
(ReLU) activation function. Algorithm1 shows the pseudo-code for training our network 
model. 
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Require: 𝛼𝛼 learning rate, b batch size, w parameters, m the number of index. 
While w has not converged do 
    For i=0,…, 1000 do 

    Sample �𝒙𝒙(𝒋𝒋),𝑪𝑪𝒌𝒌
(𝒋𝒋)�

𝒋𝒋=𝟏𝟏

𝒃𝒃
~ℙ a batch from the training data and its label. 

    �𝑙𝑙𝑘𝑘
𝑗𝑗�𝑘𝑘=1
𝑚𝑚

← 𝑓𝑓𝑤𝑤�𝑥𝑥(𝑗𝑗)� outputs of index m from our network given a batch of training data. 
    if k is 2 do 
        gw ← ∇w �

1
b
∑ �−∑ 𝐶𝐶𝑚𝑚

(𝑗𝑗) ∗ log �𝑙𝑙𝑘𝑘
(𝑗𝑗)�2

𝑘𝑘=1 �𝑏𝑏
𝑗𝑗=1 � 

    else do 
        gw ← ∇w �

1
b
∑ �−∑ 𝐶𝐶𝑘𝑘 ∗ log � 𝑒𝑒𝑙𝑙𝑖𝑖

∑ 𝑒𝑒𝑙𝑙𝑖𝑖𝑚𝑚
𝑗𝑗=1

�𝑚𝑚
𝑘𝑘=1 �𝑏𝑏

𝑗𝑗=1 � 

    w ← w + α ∙ Adam(𝑤𝑤,𝛽𝛽1,𝛽𝛽2) 
    end For 
    𝛼𝛼 ← 𝛼𝛼 ∗ 0.9999 
end While 

Algorithm 1. Pseudo-code for training our network model. 
 

4. Experiments and Results 

4.1 Experimental Setting 
To evaluate the performance of our scheme, we constructed a classification model using 
Tensorflow under a Python environment. We used a desktop computer with an Intel Core 
i5-4440 3.1GHz CPU, 24GB RAM, and NVIDIA GeForce GTX 1080ti GPU, under the 
Windows 10 operating system. In the implementation, we used Adam optimizer with an initial 
learning rate of 0.001, β1 of 0, and β2 of 0.9, and the learning rate was decayed by a factor of 
1/0.9999 for every one hundred iterations. In addition, we used the cross-entropy loss 
mentioned in Section 2.2, with a batch size of 8 and evaluated the performance using the area 
under the ROC curve (AUC) and F1-score through 5-fold cross-validation. For dataset 
classification, all classes other than the selected class when calculating AUC and F1-scores are 
considered negative classes. 

As we removed sound segments in which the target sound was distorted by other sounds or 
non-target species, significant performance degradation could occur in very noisy 
environments. Therefore, to make our model robust in the noisy environments, we added 
random noises to the SNR ratio to 1 for all datasets during training and validation. 

In [22], Li et al. used log-mel spectrograms for STFT spectrogram. In this paper, to find 
other spectrogram features that may give better classification performance, we considered two 
more popular features for sound classification, which were MFCC and delta-MFCC. Fig. 4 
shows the log-mel spectrogram, MFCC spectrogram, and delta-MFCC spectrogram for a bird 
sound. 

The steps for extracting those features are as follows. First, we can obtain log-mel features 
by taking the logs of the powers at each of the mels. The mels are calculated by Equation (4) 
which is a formula for converting a frequency f (hertz) into a mel m [26]. 
 

𝑚𝑚 = 2595 log10 �1 +
𝑓𝑓

700
� (4) 
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On the other hand, MFCC and delta-MFCC features are commonly derived as follows [27]: 

 
1. Take the Fourier transform of (a windowed excerpt of) a signal. 
2. Map the powers of the spectrum obtained above onto the mel scale, using triangular 

overlapping windows. 
3. Take the logs of the powers at each of the mel frequencies. 
4. Take the discrete cosine transform of the list of mel log powers, as if it were a signal. 
5. The MFCCs are the amplitudes of the resulting spectrum. 
6. The delta-MFCCs are calculated by differentiating the MFCCs in terms of time. 

 

   
(a) Log-mel  (b) MFCC (c) Delta-MFCC 

Fig. 5. STFT spectrograms for a bird sound. 
 
A CRNN-based classification technique that combines CNN and RNN was recently used in 

deep learning-based sound classification. Thus, we implemented the attention based 
convolutional recurrent neural network (ACRNN) model [24] and compared it with our model 
under the same experimental setting. 

 

4.2 Results and Discussion 
 
We considered five different models: one model without any STFT spectrogram as a baseline 
and three models based on the log-mel spectrogram, MFCC spectrogram, delta-MFCC 
spectrogram, and ACRNN model [24]. We compared their performance in terms of AUC and 
F1-score. 
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Fig. 6. AUC comparison of five models. 

 
Fig. 6 shows the classification performance of five models in terms of AUC. In the binary 

classification, using features like log-mel, MFCC, or delta-MFCC gives better results than not 
using any STFT-spectrogram. Because the STFT-spectrogram is a feature that visualizes the 
frequency better than the original wave-feature, using one of the STFT features gives better 
results in binary classification. In particular, the log-mel spectrogram showed the best 
performance. This is because MFCC and delta-MFCC are cepstral analysis of log-mel. That is, 
while the frequency feature undergoes an inverse Fourier transform into a time feature, some 
of the features in the frequency domain disappear and the performance may decrease. ACRNN 
showed a slightly lower AUC value compared to our model. ACRNN consists of several 
convolution layers and recurrent neural networks, which include Gated Recurrent Units (GRU) 
[28]. Reset gates in GRU work to ignore the previous state and reset with the current input 
only when the weights of the previous state are close to 0. Because of this reset structure of 
ACRNN, ARCNN showed lower performance than Log-mel, MFCC, Delta-MFCC, and ours. 

On the other hand, in the classification of animal sounds, those three STFT-spectrogram 
features showed poor performance. This is because STFT spectrograms of bio-acoustic sounds 
may share common frequency characteristics and classifying them becomes more 
complicated. 
 

Table 2. AUC comparison of five models by class. 

 

AUC 
no-STFT 

spectrogram log-mel MFCC delta-M
FCC ACRNN 

Binary 
classification 

Bio-acoustic sound 38.37 78.41 75.63 76.3 77.46 
Non-bio-acoustic 

sound 34.54 72.89 70.72 69.91 69.11 

Animal 
sound 

classification 

Anuran 69.28 61.32 64.18 63.43 61.19 
Bird 66.71 59.07 60.69 60.78 58.68 

Insect 67.78 59.01 61.92 61.59 59.15 
Freesound 

(bark, meow) 68.36 60.12 63.07 62.77 60.31 

Freesound (etc.) 64.33 57.31 60.04 59.14 57.69 
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Fig. 7 compares the classification performance of the five models in terms of F1-score. In 

the comparison, F1-score was calculated based on the number of test data in each class. The 
table shows that using log-mel, MFCC, and delta-MFCC gives better results than not using 
any STFT-spectrogram in both classifications. However, all the models showed very low 
F1-scores in the classification of animal sounds compared to the binary classification. This can 
be explained by the fact that whereas the number of negative classes in the binary 
classification is one, it is four in the animal sounds classification. Our model was slightly 
better than ACRNN, except when using the log-mel feature. MFCC and delta-MFCC 
eliminate unnecessary features in extracting some significant coefficients from the log-mel 
feature. However, for log-mel, our model trained unnecessary features and showed worse 
performance compared to MFCC or delta-MFCC features. 
 

 
Fig. 7. F1-score comparison of five models. 

 
Table 3 shows F1-scores for each class in the same way as Table 2. The results were similar 

to those in Table 2. However, the model that achieved the highest F1-score was different 
depending on the class. For instance, delta-MFCC gave better F1-scores in the anuran and the 
Freesound classes. Even though log-mel gave the best F1-scores in the bird and insect class, 
their differences from delta-MFCC are almost negligible. From this experiment, it can be seen 
that delta-MFCC is most effective overall in animal sounds classification. 
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Table 3. F1-score comparison of five models by class. 

 

F1-score 

no-STFT 
spectrogram log-mel MFCC delta-MF

CC ACRNN 

Binary 
classification 

Bio-acoustic sound 60.81 70.23 74.13 76.31 75.13 
Non-bio-acoustic 

sound 56.46 64.12 71.15 70.02 70.51 

Animal 
sound 

classification 

Anuran 38.21 40.33 39.82 41.52 41.08 
Bird 35.65 38.84 38.48 38.79 38.31 

Insect 36.48 39.79 39.29 39.71 39.27 
Freesound 

(bark, meow) 37.29 38.37 39.21 40.93 39.76 

Freesound (etc.) 34.82 37.42 38.04 38.04 37.75 
 

5. Conclusion 
In this paper, we proposed a sound classification scheme for classifying a wide range of animal 
sounds using a multi-feature network. To do that, we collected diverse datasets, including 
non-bio acoustic data, and decomposed them into classes. Then, we extracted various STFT 
spectrogram features including log-mel, MFCC, and Delta-MFCC and used them for building 
sound classification models. Our model works in two steps. In the first step, we performed a 
binary classification to determine whether the user input contains an animal sound. If so, in the 
second step, we performed animal sound classification to determine the animal species of the 
input sound. We evaluated the classification performance in terms of AUC and F1-score. The 
experimental results showed that in most cases, using STFT-spectrogram features in addition 
to wave-features improved the classification performance. In the future, we plan to expand our 
model to cover a larger number of animal species.  
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