• Title/Summary/Keyword: Multi Resonant

Search Result 221, Processing Time 0.02 seconds

A Characteristic of Alternative Flyback Multi-Resonant Converter (AT 플라이백 다중 공진형 컨버터의 동작특성)

  • Jeong, Jin-Beom;Kim, Hee-Jun;Kim, Chang-Sun;Woo, Seung-Hoon;Park, Woo-Chul
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1380-1382
    • /
    • 2005
  • The multi-resonant converter minimizes a parasitic oscillation by using the resonant tank circuit absorbed parasitic reactance existing in a converter circuit. So it is possible that the converter operated at a high frequency has a high efficiency because the losses are reduced. However, the resonant voltage stress across a switch is four or five times a input voltage. This high voltage stress increases the conduction loss. In this paper, we proposed the AT flyback multi-resonant converter. The proposed converter can reduce the voltage stress to two or three times by using two series input capacitors. The operational principle of the proposed converter was verified through the experimental converter.

  • PDF

Output Voltage Regulation for Harmonic Compensation under Islanded Mode of Microgrid

  • Lim, Kyungbae;Choi, Jaeho
    • Journal of Power Electronics
    • /
    • v.17 no.2
    • /
    • pp.464-475
    • /
    • 2017
  • This study examines a P+multi resonant-based voltage control for voltage harmonics compensation under the islanded mode of a microgrid. In islanded mode, the inverter is defined as a voltage source to supply the full local load demand without the connection to the grid. On the other hand, the output voltage waveform is distorted by the negative and zero sequence components and current harmonics due to the unbalanced and nonlinear loads. In this paper, the P+multi resonant controller is used to compensate for the voltage harmonics. The gain tuning method is assessed by the tendency analysis of the controller as the variation of gain. In addition, this study analyzes the slight voltage magnitude drop due to the practical form of the P+multi resonant and proposes a counter method to solve this problem by adding the PI-based voltage restoration method. The proposed P+multi resonant controller to compensate for the voltage harmonics is verified through the PSIM simulation and experimental results.

LCL Resonant Compensation of Movable ICPT Systems with a Multi-load

  • Hua, Jie;Wang, Hui-Zhen;Zhao, Yao;Zou, Ai-Long
    • Journal of Power Electronics
    • /
    • v.15 no.6
    • /
    • pp.1654-1663
    • /
    • 2015
  • Compared to LC resonance, LCL resonance has distinct advantages such as a large resonant capability, low voltage and current stresses of the power device, constant voltage or current output characteristics, and fault-tolerance capability. Thus, LCL resonant compensation is employed for a movable Inductive Contactless Power Transfer (ICPT) system with a multi-load in this paper, which achieves constant current output characteristics. Peculiarly, the primary side adopts a much larger compensation inductor than the primary leakage inductor to lower the reactive power, reduce the input current ripple, generate a large current in the primary side, and realize soft-switching. Furthermore, this paper proposes an approximate resonant point for large inductor-ratio LCL resonant compensation through fundamental wave analysis. In addition, the PWM control strategy is used for this system to achieve constant current output characteristics. Finally, an experimental platform is built, whose secondary E-Type coils can ride and move on a primary rail. Simulations and experiments are conducted to verify the effectiveness and accuracy of both the theory and the design method.

Alternately Zero Voltage Switched Forward, Flyback Multi-Resonant Converter Controller (교번으로 영전압 스위칭 되는 포워드, 플라이백 다중공진형 컨버터의 제어기)

  • 김창선
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.16 no.5
    • /
    • pp.7-13
    • /
    • 2002
  • In the resonant converters which can provide high efficiency and high power density, the resonant voltage stress is about 4-5 times the input voltage. It needs the power switch with high ratings. This is a reason why the conduction loss is increased. In this paper, it proposes the alternately zero voltage switched forward, flyback multi resonant converter topology for reducing the voltage stress using alternately zero voltage switching technique. And the proposed AT forward MRC is experimentally considered about the loop gain with HP4194A network analyzer.

A Parameter Selection Method for Multi-Element Resonant Converters with a Resonant Zero Point

  • Wang, Yifeng;Yang, Liang;Li, Guodong;Tu, Shijie
    • Journal of Power Electronics
    • /
    • v.18 no.2
    • /
    • pp.332-342
    • /
    • 2018
  • This paper proposes a parameter design method for multi-element resonant converters (MERCs) with a unique resonant zero point (RZP). This method is mainly composed of four steps. These steps include program filtration, loss comparison, 3D figure fine-tuning and priority compromise. It features easy implementation, effectiveness and universal applicability for almost all of the existing RZP-MERCs. Meanwhile, other design methods are always exclusive for a specific topology. In addition, a novel dual-CTL converter is also proposed here. It belongs to the RZP-MERC family and is designed in detail to explain the process of parameter selection. The performance of the proposed method is verified experimentally on a 500W prototype. The obtained results indicate that with the selected parameters, an extensive dc voltage gain is obtained. It also possesses over-current protection and minimal switching loss. The designed converter achieves high efficiencies among wide load ranges, and the peak efficiency reaches 96.9%.

Analysis and Modelling of Vibration Performance for Multi-layered Corrugated Structure

  • Kim, Jin Nyul;Sim, Jae Min;Park, Min Jung;Kim, Ghi Seok;Kim, Jongsoon;Park, Jong Min
    • Journal of Biosystems Engineering
    • /
    • v.38 no.4
    • /
    • pp.327-334
    • /
    • 2013
  • Purpose: The purpose of this study was to analyze for resonant frequency, vibration transmissibility and damping ratio of multi-layered corrugated structures using a random vibration test. Methods: The random vibration test was performed by the ASTM D4728 specifications using two paperboards (S120, K180) and two types of flutes (A/F, B/F). Damping ratio of the multi-layered corrugated structures was estimated using a theoretical equation derived from the measured resonant frequency and transmissibility. Results: The resonant frequency and vibration transmissibility of the multi-layered corrugated structures of K180 and B-flute were higher than those of S120 and A-flute, respectively; however, the damping ratio of each sample had the opposite tendency. The resonant frequency was inversely proportional to the sample thickness and static stress; vibration transmissibility and damping ratio were not correlated with sample thickness and static stress. In addition, we developed a mathematical model of the resonant frequency with variables of sample thickness and static stress. Conclusions: Results of this study can be useful for environment-friendly and optimal packaging design since vibration has been a key factor in cushioning packaging design.

Two Phase Interleaved LLC Resonant Converter (Two Phase Interleaved LLC 공진 컨버터)

  • Kim, Joo-Hoon;Lee, Kwang-Ho;Kim, Eun-Soo;Lee, Jae-Sam;Lee, Hyun-Kwan;Jung, Yong-Chae
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.14 no.5
    • /
    • pp.397-405
    • /
    • 2009
  • Nowadays, power supplies for LCD TV of larger and slimmer screen size are required to have high power density and high efficient characteristics. In order to meet these requirements, Multi-phase interleaved LLC resonant converter is applied for increasing power density and reducing the current rating in the used devices. In this paper, gain characteristics and the experimental results of the proposed two-phase LLC resonant converter which implemented by the simple control circuit are verified based on the theoretical analysis and the 300W experimental prototype.

A Novel Control Technique for a Multi-Output Switched-Resonant Converter

  • Sundararaman, K.;Gopalakrishnan, M.
    • Journal of Power Electronics
    • /
    • v.13 no.6
    • /
    • pp.928-938
    • /
    • 2013
  • This paper proposes a novel control method for a multi-output switched-resonant converter. Output voltage can be regulated against variations in the supply voltage and load by controlling the voltage of the resonant capacitor (pulse amplitude control). Precise control is possible when pulse amplitude control is combined with pulse number control. The converter is analyzed, and design considerations are explained by using examples. Control implementation is described and load regulation and ripples are analyzed by simulation and hardware results. The topology is modified to obtain an additional negative output without any additional hardware other than a diode. The analysis of such a triple output converter with two positive outputs and one negative output is conducted and confirmed. The topology and control scheme are scalable to any number of outputs.

Performance analysis of atomic magnetometer and bandwidth-extended loop antenna in resonant phase-modulated magnetic field communication system

  • Hyun Joon Lee;Jung Hoon Oh;Jang-Yeol Kim;In-Kui Cho
    • ETRI Journal
    • /
    • v.46 no.4
    • /
    • pp.727-736
    • /
    • 2024
  • Telecommunications through an electrically conductive medium require the use of carrier bands with very-low and ultralow frequencies to establish radiofrequency links in harsh environments. Recent advances in atomic magnetometers operating at very-low frequencies have facilitated the reception of digitally modulated signals. We demonstrate the transmission and reception of quadrature phase-shift keying (QPSK) signals using a multi-resonant loop antenna and atomic magnetometer, respectively. We report the measured error vector magnitude according to the symbol rate for QPSK modulation and analyze the bandwidth of a receiver based on the atomic magnetometer. The multi-resonant loop antenna noticeably enhances the bandwidth by over 70% compared with a single-loop antenna. QPSK modulation for a carrier frequency of 20 kHz and symbol rate of 150 symbols per second verifies the feasibility of demodulation, and the measured error vector magnitude and signal-to-noise ratio are 7.29% and 30.9 dB, respectively.

Self-Oscillating Switching Technique for Current Source Parallel Resonant Induction Heating Systems

  • Namadmalan, Alireza;Moghani, Javad Shokrollahi
    • Journal of Power Electronics
    • /
    • v.12 no.6
    • /
    • pp.851-858
    • /
    • 2012
  • This paper presents resonant inverter tuning for current source parallel resonant induction heating systems based on a new self oscillating switching technique. The phase error is suppressed in a wide range of operating frequencies in comparison with Phase Locked Loop (PLL) techniques. The proposed switching method has the capability of tuning under fast changes in the resonant frequency. According to this switching method, a multi-frequency induction heating (IH) system is proposed by using a single inverter. In comparison with multi-level inverter based IH systems, the advantages of this technique are its simple structure, better transients and wide range of operating frequencies. A laboratory prototype was built with an operating frequency of 35 kHz to 55 kHz and 300 W of output power. The performance of the IH system shows the validity of the new switching technique.