• Title/Summary/Keyword: Multi Nozzle

Search Result 201, Processing Time 0.031 seconds

An Experimental Study on the Measurement of the Droplet-Air Relative Velocity in the Multi-hole Diesel Spray (다공 디젤분무의 액적-공기 상대속도 측정에 관한 실험적 연구)

  • Kweon, M.H.;Shin, S.H.;Lee, J.K.;Kang, S.J.;Rho, B.J.
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.801-806
    • /
    • 2000
  • This experimental study is to investigate the intermittent spray characteristics of a multi-hole nozzle in a heavy-duty DI diesel engine. Multi 8 hole$(d_n=0.25mm)$, Multi 3 hole$(d_n=0.42)$ and Sing hole nozzle$(d_n=0.25mm)$ were used in this experiment. By using the 2-D PDPA(phase Doppler particle analyzer), the droplet diameter and the velocity of a diesel spray injected intermittently from the multi and the single-hole nozzle into a still ambient were measured. In order to calculate the mean values such as mean velocity, SMD, AMD etc. and to analyze the intermittent characteristics, the time-window of 0.15ms were applied. In the spray, the small droplet$(D<10{\mu}m)$ was regarded as an air flow, and the correlation between the fuel droplet$(10{\mu}m and the air (low was examined. The normalized axial droplet-air relative velocity of the 8 hole, the 3 hole and the single hole nozzle was evaluated as 0.081, 0.067, 0.06 and in case of the radial droplet-air relative velocity, the normalized. value is 0.014, 0.013 and 0.008 respectively.

  • PDF

CFD Analysis on Flow Characteristics of Oil Film Coating Nozzle (유막 코팅 노즐의 유동특성에 관한 CFD해석)

  • Jung, Se-Hoon;Ahn, Seuig-Ill;Shin, Byeong-Rog
    • The KSFM Journal of Fluid Machinery
    • /
    • v.11 no.5
    • /
    • pp.50-56
    • /
    • 2008
  • Metal cutting operations involve generation of heat due to friction between the tool and the pieces. This heat needs to be carried away otherwise it creates white spots. To reduce this abnormal heat cutting fluid is used. Cutting fluid also has an important role in the lubrication of the cutting edges of machine tools and the pieces they are shaping, and in sluicing away the resulting swarf. As a cutting fluid, water is a great conductor of heat but is not stable at high temperatures, so to improve stability an emulsion type mixed fluid with water and oil is often used. It is pumped over the cutting site of cutting machines as a state of atomized water droplet coated with oil by using jet. In this paper, to develop cutting fluid supplying nozzle to obtain ultra thin oil film for coating water droplet, a numerical analysis of three dimensional mixed fluid Jet through multi-stage nozzle was carried out by using a finite volume method. Jet flow characteristics such as nozzle exit velocity, development of mixing region, re-entrance and jet intensity were analyzed. Detailed mixing process of fluids such as air, water and oil in the nozzle were also investigated. It is easy to understand complex flow pattern in multi-stage nozzle. Important flow Information for advance design of cutting fluid supplying nozzle was drawn.

Numerical Simulation of Two-Phase Flow field and Performance Prediction for Solid Rocket Motor Nozzle

  • Wahab, Shafqat;Kan, Xie;Yu, Liu
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.275-282
    • /
    • 2008
  • This paper presents numerical investigation of multi-phase flow in solid rocket motor nozzle and effect of multi-phases on the performance prediction of the Solid Rocket Motor. Aluminized propellants are frequently used in solid rocket motors to increase specific impulse. An Eulerian-Lagrangian description has been used to analyze the motion of the micrometer sized and discrete phase that consist of the larger particulates present in the Solid Rocket Motor. Uniform particles diameters and Rosin-Rammler diameter distribution method has been used for the simulation of different burning of aluminum droplets generating aluminum oxide smokes. Roe-FDS scheme has been used to simulate the effects of the multi-phase flow. The results obtained show the sensitivity of this distribution to the nozzle flow dynamics, primarily at the nozzle inlet and exit. The analysis also provides effect of two phases on performance prediction of Solid Rocket Motor.

  • PDF

Transient Vibration Analysis of a Multi-packet Blade System Excited by Nozzle Jet Forces (노즐 분사력에 의해 가진되는 다중 패킷 블레이드계의 과도 진동 해석)

  • Lim, Ha-Seong;Yoo, Hong-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.57-62
    • /
    • 2007
  • A modeling method for the modal and the transient vibration analysis of a multi-packet blade system excited by nozzle jet forces is presented in this paper. Blades are idealized as cantilever beams and the elastic structures like disc and shroud connecting blades are modeled as coupling stiffnesses. A modified Campbell diagram is proposed to identify true resonance frequencies of the multi-packet blade system. Different from the SAFE diagram that employs three dimensional space, the modified Campbell diagram proposed in this study employs a plane to find the true resonance frequencies. To verify the existence of true resonance frequencies, nozzle jet forces are modeled as periodic forces and transient vibration analysis were performed with the modeling method.

  • PDF

Transient Vibration Analysis of a Multi-packet Blade System Excited by Nozzle Jet Forces (노즐 분사력에 의해 가진되는 다중 패킷 블레이드계의 과도 진동 해석)

  • Lim, Ha-Seong;Yoo, Hong-Hee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.7
    • /
    • pp.711-717
    • /
    • 2008
  • A modeling method for the modal and the transient vibration analysis of a multi-packet blade system excited by nozzle jet forces is presented in this paper. Blades are idealized as cantilever beams and the elastic structures like disc and shroud connecting blades are modeled as coupling stiffnesses. A modified Campbell diagram is proposed to identify true resonance frequencies of the multi-packet blade system. Different from the SAFE diagram that employs three dimensional space, the modified Campbell diagram Proposed in this study employs a plane to find the true resonance frequencies. To verify the existence of true resonance frequencies, nozzle jet forces are modeled as periodic forces and transient vibration analysis were performed with the modeling method.

The Effect of Multi Nozzles on the Characteristics of Annular Jet Pump (다중노즐을 이용한 환형 제트 펌프의 성능에 관한 연구)

  • Kim, M.K.;Kwon, O.B.
    • Journal of Power System Engineering
    • /
    • v.3 no.1
    • /
    • pp.23-28
    • /
    • 1999
  • Experimental and theoretical researches about jet pump have been carried out by many researchers. Jet pump can be used for the transportation of solid materials, farm produce, and fishes. It is the purpose of this paper to seek optimal multi nozzle shape of the annular jet pump. Experiments were done for several jet nozzle areas, jet nozzle arrays and jet nozzle lengths. Water was used for both the primary fluid and secondary fluid. The efficiency curves for the annular jet pump having multi nozzles are presented in this paper.

  • PDF

Intermittent Atomization Characteristics of Multi-Hole and Single-Hole Diesel Nozzle

  • Lee, Jeekuen;Kang, Shin-Jae;Park, Byungjoon
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.12
    • /
    • pp.1693-1701
    • /
    • 2002
  • The intermittent spray characteristics of a multi-hole and a single-hole diesel nozzle were experimentally investigated. The hole number of the multi-hole nozzle was 5, and the hole diameter of the 5-hole and the single-hole nozzle was the same as d$\_$n/=0.32 ㎜ with the constant hole length to diameter ratio(l$\_$n//d$\_$n/=2.81). The droplet diameters of the spray, including the time-resolved droplet diameter, SMD (Sauter mean diameter) and AMD (arithmetic mean diameter) , injected intermittently from the two nozzles into the still ambient were measured by using a 2-D PDPA (phase Doppler particle analyzer). Through the time-resolved evolutions of the droplet diameter, it was found that the structure of the multi-hole and the single-hole nozzle spray consisted of the three main parts : (a) the leading edge affected by surrounding air. and composed of small droplets; (b) the central part surrounded by the leading edge and mixing flow region and scarcely affected by the resistance of air, (c) the trailing edge formed by the passage of the central part. The SMD decreases gradually with the increase in the radial distance, and the constant value is obtained at the outer region of the radial distance (normalized by hole diameter) of 7-8 and 6 for the 5-hole and single-hole nozzle, respectively. The SMD along the centerline of the spray decrease shapely with the increase in the axial distance after showing the maximum value near the nozzle tip. The SMD remains the constant value near the axial distance(normalized by hole diameter) of 150 and 180 for the 5-hole and the single-hole nozzle, respectively.

Effect of Injection Condition on the Diesel. Fuel Atomization in a Multi-Hole Nozzle (다공 노즐에서 분사조건이 디젤 연료의 미립화 특성에 미치는 영향)

  • Sub, Hyun-Kyu;Kim, Jee-Won;Lee, Chang-Sik
    • Journal of ILASS-Korea
    • /
    • v.14 no.1
    • /
    • pp.8-14
    • /
    • 2009
  • This paper present the diesel fuel spray evolution and atomization performance in a multi-hole nozzle in terms of injection rate, spray evolutions, and mean diameter and velocity of droplets in a compression ignition engine. In order to study the effect of split injection on the diesel fuel spray and atomization characteristic in a multi-hole nozzle, the test nozzle that has two-row small orifice with 0.2 mm interval was used. The time based fuel injection rate characteristics was analyzed from the pressure variation generated in a measuring tube. The spray characteristics of a multi-hole nozzle were visualized and measured by spray visualization system and phase Doppler particle analyzer (PDPA) system. It was revealed that the total injected fuel quantities of split injection are smaller than those of single injection condition. In case of injection rate characteristics, the split injection is a little lower than single injection and the peak value of second injection rate is lower than single injection. The spray velocity of split injection is also lower because of short energizing duration and small injection mass. It can not observe the improvement of droplet atomization due to the split injection, however, it enhances the droplet distributions at the early stage of fuel injection.

  • PDF

Development of a Multi-nozzle Bioprinting System for 3D Scaffold Fabrication (3차원 지지체 제작을 위한 다중 분사체 노즐 바이오프린팅 시스템 개발)

  • Park, Sanghoon;Kim, Seongjun;Song, Seung-Joon;Choi, Jaesoon
    • Journal of Biomedical Engineering Research
    • /
    • v.36 no.6
    • /
    • pp.271-275
    • /
    • 2015
  • The aim of this study was to develop a multi-nozzle based bioprinting system for fabrication of three-dimensional (3D) biological structure. In this study, a thermoplastic biomaterial that has relatively high mechanical stability, polycaprolactone (PCL) was used to make the 3D structure. A multi-nozzle bioprinting system was designed to dispense thermoplastic biomaterial and hydrogel simultaneously. The system that consists of 3-axes of x-y-z motion control stage and a compartment for injection syringe control mounted on the stage has been developed. Also, it has 1-axis actuator for position change of nozzle. The controllability of the printed line width with PCL was tested as a representative performance index.