• 제목/요약/키워드: Multi Nozzle

검색결과 201건 처리시간 0.029초

다발 노즐을 사용한 추력 발생 제어에 관한 수치적 연구 (A Numerical Analysis of Thrust Development and Control using Multi-Nozzle)

  • 박형주;성홍계
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2010년도 제34회 춘계학술대회논문집
    • /
    • pp.288-291
    • /
    • 2010
  • 다발 노즐을 사용한 원통형 비행체의 추력 방향 제어에 대해 수치적으로 연구하였다. 밸브의 개폐를 이용하여 노즐 유량을 조절하고 다수의 경사 노즐을 배열하여 추력을 조정하는 시스템을 고려한 3차원 유동 해석을 수행하여 경사 노즐의 작동 특성을 관찰하였으며, 질량 유량에 따른 다발 노즐의 분력의 크기, 추력 및 모멘트 크기를 제시하였다.

  • PDF

Coupled Analysis of Thermo-Fluid-Flexible Multi-body Dynamics of a Two-Dimensional Engine Nozzle

  • Eun, WonJong;Kim, JaeWon;Kwon, Oh-Joon;Chung, Chanhoon;Shin, Sang-Joon;Bauchau, Olivier A.
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제18권1호
    • /
    • pp.70-81
    • /
    • 2017
  • Various components of an engine nozzle are modeled as flexible multi-body components that are operated under high temperature and pressure. In this paper, in order to predict complex behavior of an engine nozzle, thermo-fluid-flexible multi-body dynamics coupled analysis framework was developed. Temperature and pressure on the nozzle wall were obtained by the steady-state flow analysis for a two-dimensional nozzle. The pressure and temperature-dependent material properties were delivered to the flexible multi-body dynamics analysis. Then the deflection and strain distribution for a nozzle configuration was obtained. Heat conduction and thermal analyses were done using MSC.NASTRAN. The present framework was validated for a simple nozzle configuration by using a one-way coupled analysis. A two-way coupled analysis was also performed for the simple nozzle with an arbitrary joint clearance, and an asymmetric flow was observed. Finally, the total strain result for a realistic nozzle configuration was obtained using the one-way and two-way coupled analyses.

다공 디젤노즐의 홀수 변화에 따른 우량계수 평가에 관한 연구 (A Study on Estimate of Flow Coefficient with Variation of Hole Number in Multi-hole Diesel Nozzle)

  • 이지근;조원일;노병준
    • 한국자동차공학회논문집
    • /
    • 제9권2호
    • /
    • pp.59-66
    • /
    • 2001
  • This experimental study is to investigate the flow characteristics of the multi-hole nozzle used in the fuel injection system of a heavy-duty diesel engine. A multi-hole diesel nozzle with a 2-spring nozzle holder was used in this study and without changing the total orifice exit area, its hole number varied from 3($d_n$=0.42mm) to 8($d_n$=0.25mm). The injection pressure and needle lift were measured and Bosch type injection rates measurement system was used. The discharge flowrates of each orifice in the multi-hole nozzle changed by the flow conditions inside the nozzle sac hole. In case that pump speed and injection quantity were low, the orifice located in the vertex of nozzle tip had a great deal of injection quantity compared with that of others. As the increment of multi-hole number, the injection duration and the mean injection pressure decrease. The mean and peak injection rates, however, increase. Actually, the mean flow coefficient(${C_d}_{(mean)}$) increases, too. The flow coefficient of the multi 8 hole was evaluated as Cd(mean)=0.74 and that is the maximum value among the examined conditions.

  • PDF

소화 시스템에서 다중노즐의 분무특성에 관한 연구 (The Study of a Atomizing Characteristics of a Multi-Nozzle in a Fire Extinguishing System)

  • 정영권;김은필;김영수;김인관
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2008년도 하계학술발표대회 논문집
    • /
    • pp.1178-1183
    • /
    • 2008
  • This paper is about a study of atomizing characteristics of a Multi-Nozzle, which is an important part in a flooding water mist system for extinguishing fires broke out in ships. Comparing the results of experiments for the Single-Nozzle to that of numerical analyses, characteristics of a Multi-Nozzle can be found out. In situation of a Single-Nozzle’s, the atomizing angle was $34^{\circ}$. And in situation of Multi-Nozzle that combined with 5 single-nozzles, the atomizing angle increase to $125^{\circ}$. The effective area is 3.7 times of the former. The quality factor will reduce, if the diameter of the atomizing region of the nozzle reduces. Although the atomizing angle is reduced because of the atomizing property, the value of SMD still shows a good result.

  • PDF

균일한 고분자 나노섬유 매트 제작을 위한 다중 노즐 전기방사 공정 연구 (Multi-Nozzle Electrospinning Process to Fabricate Uniform Polymer Nanofiber Mats)

  • 이봉기;박재한;박건중;박광련
    • 한국기계가공학회지
    • /
    • 제17권3호
    • /
    • pp.120-126
    • /
    • 2018
  • In the present study, the multi-nozzle electrospinning process is investigated for the fabrication of uniform polymer nanofiber mats. Electrospinning has been one of the simple and efficient methods to manufacture polymer nanofibers and their mats. Although a typical electrospinning has many advantages such as simple system and operation, various materials, and cost-effectiveness, a relatively low productivity prevents it from being used in practical applications. Thus, the multi-nozzle electrospinning system with the adjustable nozzle position and rotating drum collector is designed and produced in this study. In particular, the effects of the inter-nozzle distance and spatial arrangement of nozzles on the uniformity of the electrospun nanofibers are investigated. With this multi-nozzle electrospinning process, the maximum flow rate of the supplied polymer solution for a uniform electrospinning increases, which indicates the enhanced productivity.

노즐 형상 변경이 소형 CRDI 엔진의 성능에 미치는 영향에 대한 수치 해석적 연구 (Numerical Study on the Effect of Nozzle Geometry on the Small CRDI Engine Performance)

  • 민세훈;서현규
    • 한국분무공학회지
    • /
    • 제20권4호
    • /
    • pp.254-260
    • /
    • 2015
  • The objective of this study is to investigate the effect of multi-hole nozzle on the performance of small CRDI engine. Combustion and exhaust emission characteristics of engine were studied by using CFD simulation with ECFM-3Z combustion model. The conditions of simulation were varied with nozzle geometry, injection timing and injection quantity. In addition, the results were compared in terms of combustion pressure, rate of heat release, $NO_x$ and soot emissions. It was found that combustion pressure was increased when injection timing was advanced. The rate of heat release of 6 hole nozzle was higher than that of 12 hole nozzle since the quantity of fuel impinged at the bottom of piston rim was different under different injection timing conditions. In the case of $NO_x$ emission, 6 hole nozzle generated more $NO_x$ emission than 12 hole nozzle. On the other hand, in the case of soot emission, 12 hole nozzle showed higher value than 6 hole nozzle because injected fuel droplets from multi-hole nozzle were coalesced.

간헐 다공 디젤 분무의 미립화 특성에 관한 실험적 연구 (An Experimental Study on the Atomization Characteristics in an Intermittent Multi-hole Diesel Spray)

  • 이지근;강신재;노병준
    • 한국자동차공학회논문집
    • /
    • 제9권3호
    • /
    • pp.27-34
    • /
    • 2001
  • This experimental study is to investigate the intermittent spray characteristics of the multi-hole diesel nozzle with a 2-spring nozzle holder. Without changing the total orifice exit area, its hole number varied from 3($d_n=0.42mm$) to 8($d_n$=0.25mm). Through the use of the 2-D PDPA(phase Doppler particle analyzer), the droplet diameter and the velocity of the diesel spray injected intermittently from the multi-hole nozzle into the still ambient were measured. And the calculations of time-resolved diameters, SMD and AMD were made. The results can be summarized as follows. The spray of the multi-hole nozzle consisted of three parts. These are the leading edge, the central part and the trailing edge. And most of droplets produced at the trailing edge of spray. In the spray flow field, the measuring position which represented the intermittent spray characteristics well was near the nozzle tip. But at the downstream of the spray, its characteristics disappeared, and spray behavior showed a quasi steady state regardless of the time evolution of the spray. The overall mean SMD of the spray increased with the spray development, and showed their maximum value near 1.5ms regardless of hole number.

  • PDF

다수 난류 비예혼합 화염의 상호작용에 관한 연구 (The Stability of Turbulent Interacting Flames)

  • 김진선;이병준
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집A
    • /
    • pp.453-458
    • /
    • 2001
  • The stability of turbulent nonpremixed interacting flames is investigated in terms of nozzle configuration shapes which depend on the existence of the center nozzles. Six nozzle arrangements which are cross 4, 5, 8, 9, square 8 and circular 8 nozzles are used for the experiment. Those are arranged to see the effect of the center nozzle out of multi-nozzle. There are many parameters that affect flame stability in multi-nozzle flame such as nozzle separation distance, fuel flowrates and nozzle configuration, but the most important factor is the existence of nozzles in the center area from the nozzle arrangement. As the number of nozzle in the area is reduced, more air can be entrained into the center of flame base and then tag flame is formed. In the case of circular 8 nozzles, blowout flowrates are above 5.4 times compared with that of single equivalent area nozzle.

  • PDF

Atomization Characteristics of Intermittent Multi-Hole Diesel Spray Using Time-Resolved PDPA Data

  • Lee, Jeekuen;Shinjae Kang;Park, Byungjoon
    • Journal of Mechanical Science and Technology
    • /
    • 제17권5호
    • /
    • pp.766-775
    • /
    • 2003
  • The intermittent spray characteristics of a multi-hole diesel nozzle with a 2-spring nozzle holder were investigated experimentally. Without changing the total orifice exit area, the hole number of the multi-hole nozzle varied from 3 (d$\_$n/=0.42 mm) to 5 (d$\_$n/=0.32 mm). The time-resolved droplet diameters of the spray including the SMD (Saute. mean diameter) and the AMD (arithmetic mean diameter), injected intormittently from the multi-hole nozzles into still ambient ai., were measured by using a 2-D PDPA (phase Doppler particle analyze.). The 5-hole nozzle spray shows the smaller spray cone angle, the decreased SMD distributions and the small difference between the SMD and the AMD, compared with that of the 3-hole nozzle spray. From the SMD distributions with the radial distance, the spray structure can be classified into the three regions : (a) the inner region showing the high SMD distribution , (b) the mixing flow region where the shea. flow structure would be constructed : and (c) the outer region formed through the disintegration processes of the spray inner region and composed of fine droplets. Through the SMD distributions along the spray centerline, it reveals that the SMD decreases rapidly after showing the maximum value in the vicinity of the nozzle tip. The SMD remains the constant value near the Z/d$\_$n/=166 and 156.3 for the 3-hole and 5-hole nozzles, which illustrate that the disintegration processes of the 5-hole nozzle spray proceed more rapidly than that of the 3-hole nozzle spray.

신형 수이젝터 개발을 위한 실험연구 (Experimental Study for the Development of New Type Water Ejector)

  • 문수범;최현규;최재혁;권형정;김경근;최순호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제30권6호
    • /
    • pp.677-684
    • /
    • 2006
  • An ejector is a fluid transfer device to be used for mixing of fluids, maintaining vacuum, and overcoming a poor suction condition. To date, most ejectors have been made from the casting process. which is time-consuming and high-cost process. Therefore, a new production method of ejectors is desired if any. In this experimental study, we proposed a new type ejector manufactured from the commercial fitting materials and the welding process, which is equipped with an orifice type nozzle. The proposed ejector has a good integrity compared with the conventional ejector because the fittings have manufactured by forging and they have more strength than the casting materials. Furthermore we adopted a multi-opening orifice type nozzle for improving a suction capacity and compared with a single-opening orifice type nozzle. From the experimental results. we confirmed that the multi-opening nozzle had a food suction capacity than the single-opening nozzle and the proposed new type ejector showed higher vacuum than the conventional type ejector in non-load condition. These improved characteristics suggests that a new type ejector by using the commercial fittings opens the feasibility to be adopted in various industry fields and that the increased suction capacity can be achieved by altering the nozzle design of a conventional ejector.