• Title/Summary/Keyword: Multi Linear Regression

Search Result 223, Processing Time 0.023 seconds

ANN-based Evaluation Model of Combat Situation to predict the Progress of Simulated Combat Training

  • Yoon, Soungwoong;Lee, Sang-Hoon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.22 no.7
    • /
    • pp.31-37
    • /
    • 2017
  • There are lots of combined battlefield elements which complete the war. It looks problematic when collecting and analyzing these elements and then predicting the situation of war. Commander's experience and military power assessment have widely been used to come up with these problems, then simulated combat training program recently supplements the war-game models through recording real-time simulated combat data. Nevertheless, there are challenges to assess winning factors of combat. In this paper, we characterize the combat element (ce) by clustering simulated combat data, and then suggest multi-layered artificial neural network (ANN) model, which can comprehend non-linear, cross-connected effects among ces to assess mission completion degree (MCD). Through our ANN model, we have the chance of analyzing and predicting winning factors. Experimental results show that our ANN model can explain MCDs through networking ces which overperform multiple linear regression model. Moreover, sensitivity analysis of ces will be the basis of predicting combat situation.

A New Constrained Parameter Estimation Approach in Preference Decomposition

  • Kim, Fung-Lam;Moy, Jane W.
    • Industrial Engineering and Management Systems
    • /
    • v.1 no.1
    • /
    • pp.73-78
    • /
    • 2002
  • In this paper, we propose a constrained optimization model for conjoint analysis (a preference decomposition technique) to improve parameter estimation by restricting the relative importance of the attributes to an extent as decided by the respondents. Quite simply, respondents are asked to provide some pairwise attribute comparisons that are then incorporated as additional constraints in a linear programming model that estimates the partial preference values. This data collection method is typical in the analytic hierarchy process. Results of a simulation study show the new model can improve the predictive accuracy in partial value estimation by ordinal east squares (OLS) regression.

Constructing Negative Links from Multi-facet of Social Media

  • Li, Lin;Yan, YunYi;Jia, LiBin;Ma, Jun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.5
    • /
    • pp.2484-2498
    • /
    • 2017
  • Various types of social media make the people share their personal experience in different ways. In some social networking sites. Some users post their reviews, some users can support these reviews with comments, and some users just rate the reviews as kind of support or not. Unfortunately, there is rare explicit negative comments towards other reviews. This means if there is a link between two users, it must be positive link. Apparently, the negative link is invisible in these social network. Or in other word, the negative links are redundant to positive links. In this work, we first discuss the feature extraction from social media data and propose new method to compute the distance between each pair of comments or reviews on social media. Then we investigate whether we can predict negative links via regression analysis when only positive links are manifested from social media data. In particular, we provide a principled way to mathematically incorporate multi-facet data in a novel framework, Constructing Negative Links, CsNL to predict negative links for discovering the hidden information. Additionally, we investigate the ways of solution to general negative link predication problems with CsNL and its extension. Experiments are performed on real-world data and results show that negative links is predictable with multi-facet of social media data by the proposed framework CsNL. Essentially, high prediction accuracy suggests that negative links are redundant to positive links. Further experiments are performed to evaluate coefficients on different kernels. The results show that user generated content dominates the prediction performance of CsNL.

Relationships Between Multiple Intelligences and Affective Factors in Children's Learning (아동의 다중지능과 학습의 정의적 요인의 관계)

  • Jung, Hye Young;Lee, Kyeong Hwa
    • Korean Journal of Child Studies
    • /
    • v.28 no.5
    • /
    • pp.253-267
    • /
    • 2007
  • This study examined the relationships between multiple intelligences as cognitive factors and affective factors of learning motivation and academic self-concept. The data were collected from 276 4th grade elementary school students and analyzed by correlation, multi-variate analysis, and step-wise multiple regression. Results were that (1) multiple intelligences, learning motivation, and academic self-concept had statistically significant correlations among themselves. Multi-variate analysis showed that intra-personal intelligence explained 58.6% of the linear combination of learning motivation and academic self-concept. (2) Intra-personal intelligence explained 29% to 58% of learning motivation and its sub-factors of achievement motivation, internal locus of control, self-efficacy, and self-regulation. (3) Intra-personal intelligence, logical-mathematical intelligence, musical intelligence, and inter-personal intelligence were explanatory variables for academic self-concept and its sub-factors.

  • PDF

Improved Estimation of Hourly Surface Ozone Concentrations using Stacking Ensemble-based Spatial Interpolation (스태킹 앙상블 모델을 이용한 시간별 지상 오존 공간내삽 정확도 향상)

  • KIM, Ye-Jin;KANG, Eun-Jin;CHO, Dong-Jin;LEE, Si-Woo;IM, Jung-Ho
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.25 no.3
    • /
    • pp.74-99
    • /
    • 2022
  • Surface ozone is produced by photochemical reactions of nitrogen oxides(NOx) and volatile organic compounds(VOCs) emitted from vehicles and industrial sites, adversely affecting vegetation and the human body. In South Korea, ozone is monitored in real-time at stations(i.e., point measurements), but it is difficult to monitor and analyze its continuous spatial distribution. In this study, surface ozone concentrations were interpolated to have a spatial resolution of 1.5km every hour using the stacking ensemble technique, followed by a 5-fold cross-validation. Base models for the stacking ensemble were cokriging, multi-linear regression(MLR), random forest(RF), and support vector regression(SVR), while MLR was used as the meta model, having all base model results as additional input variables. The results showed that the stacking ensemble model yielded the better performance than the individual base models, resulting in an averaged R of 0.76 and RMSE of 0.0065ppm during the study period of 2020. The surface ozone concentration distribution generated by the stacking ensemble model had a wider range with a spatial pattern similar with terrain and urbanization variables, compared to those by the base models. Not only should the proposed model be capable of producing the hourly spatial distribution of ozone, but it should also be highly applicable for calculating the daily maximum 8-hour ozone concentrations.

Closed-form fragility analysis of the steel moment resisting frames

  • Kia, M.;Banazadeh, M.
    • Steel and Composite Structures
    • /
    • v.21 no.1
    • /
    • pp.93-107
    • /
    • 2016
  • Seismic fragility analysis is a probabilistic decision-making framework which is widely implemented for evaluating vulnerability of a building under earthquake loading. It requires ingredient named probabilistic model and commonly developed using statistics requiring collecting data in large quantities. Preparation of such a data-base is often costly and time-consuming. Therefore, in this paper, by developing generic seismic drift demand model for regular-multi-story steel moment resisting frames is tried to present a novel application of the probabilistic decision-making analysis to practical purposes. To this end, a demand model which is a linear function of intensity measure in logarithmic space is developed to predict overall maximum inter-story drift. Next, the model is coupled with a set of regression-based equations which are capable of directly estimating unknown statistical characteristics of the model parameters.To explicitly address uncertainties arise from randomness and lack of knowledge, the Bayesian regression inference is employed, when these relations are developed. The developed demand model is then employed in a Seismic Fragility Analysis (SFA) for two designed building. The accuracy of the results is also assessed by comparison with the results directly obtained from Incremental Dynamic analysis.

Development of Neural Network Model for Pridiction of Daily Maximum Ozone Concentration in Summer (하계의 일 최고 오존농도 예측을 위한 신경망모델의 개발)

  • 김용국;이종범
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.10 no.4
    • /
    • pp.224-232
    • /
    • 1994
  • A new neural network model has been developed to predict short-term air pollution concentration. In addition, a multiple regression model widely used in statistical analysis was tested. These models were applied for prediction of daily maximum ozone concentration in Seoul during the summer season of 1991. The time periods between May and September 1989 and 1990 were utilized to train set of learning patterns in neural network model, and to estimate multiple regression model. To evaluate the results of the different models, several Performance indices were used. The results indicated that the multiple regression model tended to underpredict the daily maximum ozone concentration with small r$^{2}$(0.38). Also, large errors were found in this model; 21.1 ppb for RMSE, 0.324 for NMSE, and -0.164 for MRE. On the other hand, the results obtained from the neural network model were very promising. Thus, we can know that this model has a prominent efficiency in the adaptive control for the non-linear multi- variable systems such as photochemical oxidants. Also, when the recent new information was added in the neural network model, prediction accuracy was increased. From the new model, the values of RMSE, NMSE and r$^{2}$ were 13.2ppb, 0.089, 0.003 and 0.55 respectively.

  • PDF

Suggestion and Evaluation of a Multi-Regression Linear Model for Creep Life Prediction of Alloy 617 (Alloy 617의 장시간 크리프 수명 예측을 위한 다중회귀 선형 모델의 제안 및 평가)

  • Yin, Song-Nan;Kim, Woo-Gon;Jung, Ik-Hee;Kim, Yong-Wan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.4
    • /
    • pp.366-372
    • /
    • 2009
  • Creep life prediction has been commonly used by a time-temperature parameter (TTP) which is correlated to an applied stress and temperature, such as Larson-Miller (LM), Orr-Sherby-Dorn (OSD), Manson-Haferd (MH) and Manson-Succop (MS) parameters. A stress-temperature linear model (STLM) based on Arrhenius, Dorn and Monkman-Grant equations was newly proposed through a mathematical procedure. For this model, the logarithm time to rupture was linearly dependent on both an applied stress and temperature. The model parameters were properly determined by using a technique of maximum likelihood estimation of a statistical method, and this model was applied to the creep data of Alloy 617. From the results, it is found that the STLM results showed better agreement than the Eno’s model and the LM parameter ones. Especially, the STLM revealed a good estimation in predicting the long-term creep life of Alloy 617.

Thermal Deformation Error Analysis and Experiment of a Linear Motor (Linear Motor의 열변형 오차해석 및 실험)

  • 최우혁;민경석;오준모;최우천;홍대희
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.286-289
    • /
    • 1997
  • In the design of structure the forces acting on the structure are important parameter for noise and vibration control. However, in the complex structure, the forces at the injection pomt on the structure cannot be measured directly. Thus it is necessary to find out indirect force evaluation method. In thls paper forces have been measured with in-situ vibration responses and system information. Three existing techniques of indirect force measurement, viz. direct inverse, principal component analysis and regularization have been compared. It has been shown that multi-vibration responses are essential for the precise estimation of the forces. To satisfy those cond~tions, Rotary compressor is adopted as test sample, because it is very difficult to measurc the injection forces from internal excitat~on to shell. It has also been obtained that relatively higher force IS transmitted through three welding paths to the compressor shell. It shows a good agreement between direct and indirect force evaluation wlth curvature shell and plate and is investigated the possibility of force evaluation of rotary compressor as a complex structure.

  • PDF

A Study on the Subjective Textures, Sensibilities and the Objective Handle of Knit Fabrics (니트 소재의 주관적 질감 및 감성과 객관적 태에 관한 연구)

  • Ju, Jeong-Ah;Ryu, Hyo-Seon
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.30 no.1 s.149
    • /
    • pp.83-93
    • /
    • 2006
  • The purpose of this study is to analyze the relationship among subjective textures, sensibilities and objective handle of knit fabrics and to provide useful information in planning and designing knit fabrics. We made 20 plain knit fabrics, as specimens, with a combination of 5 kinds of wool/rayon fiber contents and 4 kinds of stitch loop length. For the subjective evaluation, we used 29 questions of subjective textures and sensibilities and employed statistical analysis tools such as factor, Pearson's correlation analysis. An objective handle was measured by Kawabata evaluation system and HV and THV was calculated by KN-402-KT and KN-301-winter. The analysis of a Pearson's correlation with objective properties and handles and structural properties of knit fabrics demonstrated a highly linear relationship. Especially, wool/rayon contents and WT of tensile properties and loop stitch length and G of shear properties showed a correlation coefficient over 0.9. But a relationship of objective properties and subjective textures and sensibilities was non-linear and a linear multi-regression analysis showed that a objective handle had a lower prediction power in the area of subjective textures and sensibilities.