• Title/Summary/Keyword: Multi Detector

Search Result 509, Processing Time 0.025 seconds

The Multi-layer Fabrication and Characteristic Performance for Dark Current Reduction of Mercury Iodide (Hgl2의 누설전류 저감을 위한 다층구조 제작 및 특성 평가)

  • Kim, Kyung-Jin;Park, Ji-Koon;Kang, Sang-Sik;Cha, Byung-Youl;Cho, Sung-Ho;Kim, Jin-Yung;Mun, Chi-Ung;Nam, Sang-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.388-389
    • /
    • 2005
  • In this paper, the electric properties of mercury Iodide multi-layer samples has been investigated. We measured and analyzed their performance parameters such as the X-ray sensitivity and dark-current for a mercury Iodide multi-layer X-ray detector with a dielectric layer. The digital X-ray image detector can be constructed by integrating photoconduction multi-layer that dielectric layer has characteristics of low dark-current, high X-ray sensitivity. However this process has found to have complexity on the performance of the sample. We have investigate dielectric layer that it substitute dielectric layer for HgO(Mercury Oxide). We have employed two approaches for producing the mercury Iodide sample : 1) Physical Vapor Deposition(PVD) and 2) Particle-In-Binder(PIB). In this paper fabricated by PIB Method with thicknesses ranging from approximately 180um to 240um and we could produce high-quality samples for each technique particular application. As results, the dielectric materials such as HgO between the dielectric layer and the top electrode may reduce the dark-current of the samples. Mercury Iodide multi-layer having HgO has characteristics of low dark-current, high X-ray sensitivity and simple processing. So we can acquired a enhanced signal to noise ratio. In this paper offer the method can reduce the dark-current in the X-ray detector.

  • PDF

Multi-Class Multi-Object Tracking in Aerial Images Using Uncertainty Estimation

  • Hyeongchan Ham;Junwon Seo;Junhee Kim;Chungsu Jang
    • Korean Journal of Remote Sensing
    • /
    • v.40 no.1
    • /
    • pp.115-122
    • /
    • 2024
  • Multi-object tracking (MOT) is a vital component in understanding the surrounding environments. Previous research has demonstrated that MOT can successfully detect and track surrounding objects. Nonetheless, inaccurate classification of the tracking objects remains a challenge that needs to be solved. When an object approaching from a distance is recognized, not only detection and tracking but also classification to determine the level of risk must be performed. However, considering the erroneous classification results obtained from the detection as the track class can lead to performance degradation problems. In this paper, we discuss the limitations of classification in tracking under the classification uncertainty of the detector. To address this problem, a class update module is proposed, which leverages the class uncertainty estimation of the detector to mitigate the classification error of the tracker. We evaluated our approach on the VisDrone-MOT2021 dataset,which includes multi-class and uncertain far-distance object tracking. We show that our method has low certainty at a distant object, and quickly classifies the class as the object approaches and the level of certainty increases.In this manner, our method outperforms previous approaches across different detectors. In particular, the You Only Look Once (YOLO)v8 detector shows a notable enhancement of 4.33 multi-object tracking accuracy (MOTA) in comparison to the previous state-of-the-art method. This intuitive insight improves MOT to track approaching objects from a distance and quickly classify them.

Low-Complexity and Low-Power MIMO Symbol Detector for Mobile Devices with Two TX/RX Antennas

  • Jang, Soohyun;Lee, Seongjoo;Jung, Yunho
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.15 no.2
    • /
    • pp.255-266
    • /
    • 2015
  • In this paper, a low-complexity and low-power soft output multiple input multiple output (MIMO) symbol detector is proposed for mobile devices with two transmit and two receive antennas. The proposed symbol detector can support both the spatial multiplexing mode and spatial diversity mode in single hardware and shows the optimal maximum likelihood (ML) performance. By applying a multi-stage pipeline structure and using a complex multiplier based on the polar-coordinate, the complexity of the proposed architecture is dramatically decreased. Also, by applying a clock-gating scheme to the internal modules for MIMO modes, the power consumption is also reduced. The proposed symbol detector was designed using a hardware description language (HDL) and implemented using a 65nm CMOS standard cell library. With the proposed architecture, the proposed MIMO detector takes up an area of approximately $0.31mm^2$ with 183K equivalent gates and achieves a 150Mbps throughput. Also, the power estimation results show that the proposed MIMO detector can reduce the power consumption by a maximum of 85% for the various test cases.

Seafloor terrain detection from acoustic images utilizing the fast two-dimensional CMLD-CFAR

  • Wang, Jiaqi;Li, Haisen;Du, Weidong;Xing, Tianyao;Zhou, Tian
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.13 no.1
    • /
    • pp.187-193
    • /
    • 2021
  • In order to solve the problem of false terrains caused by environmental interferences and tunneling effect in the conventional multi-beam seafloor terrain detection, this paper proposed a seafloor topography detection method based on fast two-dimensional (2D) Censored Mean Level Detector-statistics Constant False Alarm Rate (CMLD-CFAR) method. The proposed method uses s cross-sliding window. The target occlusion phenomenon that occurs in multi-target environments can be eliminated by censoring some of the large cells of the reference cells, while the remaining reference cells are used to calculate the local threshold. The conventional 2D CMLD-CFAR methods need to estimate the background clutter power level for every pixel, thus increasing the computational burden significantly. In order to overcome this limitation, the proposed method uses a fast algorithm to select the Regions of Interest (ROI) based on a global threshold, while the rest pixels are distinguished as clutter directly. The proposed method is verified by experiments with real multi-beam data. The results show that the proposed method can effectively solve the problem of false terrain in a multi-beam terrain survey and achieve a high detection accuracy.

Development of a multi-modal imaging system for single-gamma and fluorescence fusion images

  • Young Been Han;Seong Jong Hong;Ho-Young Lee;Seong Hyun Song
    • Nuclear Engineering and Technology
    • /
    • v.55 no.10
    • /
    • pp.3844-3853
    • /
    • 2023
  • Although radiation and chemotherapy methods for cancer therapy have advanced significantly, surgical resection is still recommended for most cancers. Therefore, intraoperative imaging studies have emerged as a surgical tool for identifying tumor margins. Intraoperative imaging has been examined using conventional imaging devices, such as optical near-infrared probes, gamma probes, and ultrasound devices. However, each modality has its limitations, such as depth penetration and spatial resolution. To overcome these limitations, hybrid imaging modalities and tracer studies are being developed. In a previous study, a multi-modal laparoscope with silicon photo-multiplier (SiPM)-based gamma detection acquired a 1 s interval gamma image. However, improvements in the near-infrared fluorophore (NIRF) signal intensity and gamma image central defects are needed to further evaluate the usefulness of multi-modal systems. In this study, an attempt was made to change the NIRF image acquisition method and the SiPM-based gamma detector to improve the source detection ability and reduce the image acquisition time. The performance of the multi-modal system using a complementary metal oxide semiconductor and modified SiPM gamma detector was evaluated in a phantom test. In future studies, a multi-modal system will be further optimized for pilot preclinical studies.

Satellite EOS(Electronic optical system) CCD(charge coupled device) detector control driver module design

  • Park, Jong-Euk;Kong, Jong-Pil;Yong, Sang-Soon;Heo, Haeng-Pal;Kim, Young-Sun;Youn, Heong-Sik
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1121-1123
    • /
    • 2003
  • The CCD (Charge coupled device) detector that is used to convert the light into electronic data is very important component in satellite camera. A Linear CCD Spectral detector shall be used in the MSC (Multi-Spectral Camera, to obtain data for high-resolution images) Payload. In this paper, the design concept of the CCD detector control module in the MSC CEU (Camera electronic unit) system which will be a payload on KOMPSAT is described in terms of H/W (clock speed and accuracy).

  • PDF

A Study on the Realization of Broadband frequency Multiple VCO for Multi-Band Radar Detector (다중 대역 레이더 탐지기용 광대역 주파수 체배 VCO 구현에 관한 연구)

  • Park Wook-Ki;Kang Suk-Youb;Go Min-Ho;Park Hyo-Dal
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.10A
    • /
    • pp.971-978
    • /
    • 2005
  • In this paper, we design and fabricate a VCO(Voltage Controlled Oscillator) for radar detector of X/K/Ka band using frequency multiplier. The existing VCO operated in radar detector have many Problems such as narrow bandwidth, slow frequency variable rate, unstable of production due to high frequency. So we design and fabricate a VCO improved such problems using frequency multiplier. As a result of measure, investigated frequency multiple VCO show its output power 3.64 dBm at multiplied operating frequency 11.27 GHz and have wide frequency tuning range of 660 MHz by controlled voltage 0V to 4.50 V applied diode. And also its phase noise is -104.0 dEc at 1 MHz offset frequency so we obtain suitable performance for commercial use.

Efficient Symbol Detector for Multiple Antenna Communication Systems (다중 안테나 통신 시스템을 위한 효율적인 심볼 검출기 설계 연구)

  • Jang, Soo-Hyun;Han, Chul-Hee;Choi, Sung-Nam;Kwak, Jae-Seop;Jung, Yun-Ho
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.47 no.3
    • /
    • pp.41-50
    • /
    • 2010
  • In this paper, an area-efficient symbol detector is proposed for MIMO communication systems with two transmit and two receive antennas. The proposed symbol detector can support both the spatial multiplexing mode and spatial diversity mode for MIMO transmission technique, and shows the optimal maximum likelihood (ML) performance. Also, by sharing the hardware block with multi-stage pipeline structure and using the complex multiplier based on polar-coordinate,the complexity of the proposed architecture is dramatically decreased. The proposed symbol detector was designed in hardware description language (HDL) and implemented with Xilinx Virtex-5 FPGA. With the proposed architecture, the number of logic slices for the proposed symbol detection is 52490 and the number of DSP48s (dedicated multiplier) is 52, which are reduced by 35.3% and 85.3%, respectively, compared with the conventional architecture.