• Title/Summary/Keyword: Moving objects databases

Search Result 84, Processing Time 0.017 seconds

On Indexing Method for Current Positions of Moving Objects (이동 객체의 현재 위치 색인 기법)

  • Park, Hyun-Kyoo;Kang, Sung-Tak;Kim, Myoung-Ho;Min, Kyoung-Wook
    • Journal of Korea Spatial Information System Society
    • /
    • v.5 no.1 s.9
    • /
    • pp.65-74
    • /
    • 2003
  • Location-based service is an important spatiotemporal database application area that provides the location-aware information of wireless terminals via positioning devices such as GPS. With the rapid advances of wireless communication systems, the requirement of mobile application areas including traffic, mobile commerce and supply chaining management became the center of attention for various research issues in spatiotemporal databases. In this paper we present the A-Quadtree, an efficient indexing method for answering location-based queries where the movement vector information (e.g., speed and velocity) is not presented. We implement the A-Quadtree with an index structure for object identifiers as a.Net component to apply the component to multiplatforms. We present our approach and describe the performance evaluation through various experiments. In our experiments, we compare the performance with previous approaches and show the enhanced efficiency of our method.

  • PDF

A 3-Layered Framework for Spatiotemporal Knowledge Discovery (시공간 지식탐사를 위한 3계층 프레임워크)

  • 이준욱;남광우;류근호
    • Journal of KIISE:Databases
    • /
    • v.31 no.3
    • /
    • pp.205-218
    • /
    • 2004
  • As the development of database technology for managing spatiotemporal data, new types of spatiotemporal application services that need the spatiotemporal knowledge discovery from the large volume of spatiotemporal data are emerging. In this paper, a new 3-layered discovery framework for the development of spatiotemporal knowledge discovery techniques is proposed. The framework supports the foundation model in order not only to define spatiotemporal knowledge discovery problem but also to represent the definition of spatiotemporal knowledge and their relationships. Also the components of spatiotemporal knowledge discovery system and its implementation model are proposed. The discovery framework proposed in this paper satisfies the requirement of the development of new types of spatiotemporal knowledge discovery techniques. The proposed framework can support the representation model of each element and relationships between objects of the spatiotemporal data set, information and knowledge. Hence in designing of the new types of knowledge discovery such as spatiotemporal moving pattern, the proposed framework can not only formalize but also simplify the discovery problems.

Disproportional Insertion Policy for Improving Query Performance in RFID Tag Data Indices (RFID 태그 데이타 색인의 질의 성능 향상을 위한 불균형 삽입 정책)

  • Kim, Gi-Hong;Hong, Bong-Hee;Ahn, Sung-Woo
    • Journal of KIISE:Databases
    • /
    • v.35 no.5
    • /
    • pp.432-446
    • /
    • 2008
  • Queries for tracing tag locations are among the most challenging requirements in RFID based applications, including automated manufacturing, inventory tracking and supply chain management. For efficient query processing, a previous study proposed the index scheme for storing tag objects, based on the moving object index, in 3-dimensional domain with the axes being the tag identifier, the reader identifier, and the time. In a different way of a moving object index, the ranges of coordinates for each domain are quite different so that the distribution of query regions is skewed to the reader identifier domain. Previous indexes for tags, however, do not consider the skewed distribution for query regions. This results in producing many overlaps between index nodes and query regions and then causes the problem of traversing many index nodes. To solve this problem, we propose a new disproportional insertion and split policy of the index for RFID tags which is based on the R*-tree. For efficient insertion of tag data, our method derives the weighted margin for each node by using weights of each axis and margin of nodes. Based the weighted margin, we can choose the subtree and the split method in order to insert tag data with the minimum cost. Proposed insertion method also reduces the cost of region query by reducing overlapped area of query region and MBRs. Our experiments show that the index based on the proposed insertion and split method considerably improves the performance of queries than the index based on the previous methods.

An Efficient Spatial Join Method Using DOT Index (DOT 색인을 이용한 효율적인 공간 조인 기법)

  • Back, Hyun;Yoon, Jee-Hee;Won, Jung-Im;Park, Sang-Hyun
    • Journal of KIISE:Databases
    • /
    • v.34 no.5
    • /
    • pp.420-436
    • /
    • 2007
  • The choice of an effective indexing method is crucial to guarantee the performance of the spatial join operator which is heavily used in geographical information systems. The $R^*$-tree based method is renowned as one of the most representative indexing methods. In this paper, we propose an efficient spatial join technique based on the DOT(Double Transformation) index, and compare it with the spatial Join technique based on the $R^*$-tree index. The DOT index transforms the MBR of an spatial object into a single numeric value using a space filling curve, and builds the $B^+$-tree from a set of numeric values transformed as such. The DOT index is possible to be employed as a primary index for spatial objects. The proposed spatial join technique exploits the regularities in the moving patterns of space filling curves to divide a query region into a set of maximal sub-regions within which space filling curves traverse without interruption. Such division reduces the number of spatial transformations required to perform the spatial join and thus improves the performance of join processing. The experiments with the data sets of various distributions and sizes revealed that the proposed join technique is up to three times faster than the spatial join method based on the $R^*$-tree index.