• Title/Summary/Keyword: Moving Phantom System

Search Result 47, Processing Time 0.029 seconds

Accuracy Evaluation of CyberKnife $Synchrony^{TM}$ Respiratory Tracking System Using Phantom (Phantom을 이용한 사이버나이프 $Synchrony^{TM}$ 호흡 추적장치의 정확성 평가)

  • Kim, Gha-Jung;Bae, Seok-Hwan;Lim, Chang-Seon;Kim, Chong-Yeal
    • Journal of Radiation Protection and Research
    • /
    • v.34 no.3
    • /
    • pp.137-143
    • /
    • 2009
  • This study was conducted to evaluate the accuracy of CyberKnife $Synchrony^{TM}$ respiratory tracking system which was applied to Stereotactic Radiosurgery (SRS) for moving tumors in chest and abdomen with breathing motion. For accurate evaluation, gold fiducial marks were implanted into a moving phantom. The moving phantom was a cube imbedding an acryl ball as a target. The acryl ball was prescribed to 20 Gy at 70% of isodose curve in a virtual treatment and radiochromic films were inserted into the acryl ball for dose verification and tracking accuracy evaluation. The evaluation of position tracking consists of two parts: fiducial mark tracking in a stationary phantom and $Synchrony^{TM}$ respiratory tracking in a moving phantom. Each measurement was done in three directions and was repeated to 5 times. Range of position error was 0.1957 mm to 0.6520 mm in the stationary phantom and 0.4405 mm to 0.7665 mm in the moving phantom. Average position error was 0.3926 mm and 0.5673 mm in the stationary phantom and the moving phantom respectively. This study evaluates the accuracy of CyberKnife $Synchrony^{TM}$ Respiratory tracking system, and confirms the usefulness when it's used for Stereotactic Radiosurgery of body organs.

Analysis of the Dose Distribution of Moving Organ using a Moving Phantom System (구동팬텀 시스템에 의한 움직이는 장기의 선량분포 분석)

  • Kim, Yon-Lae;Park, Byung-Moon;Bae, Yong-Ki;Kang, Min-Young;Lee, Gui-Won;Bang, Dong-Wan
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.18 no.2
    • /
    • pp.81-87
    • /
    • 2006
  • Purpose: Few researches have been peformed on the dose distribution of the moving organ for radiotherapy so far. In order to simulate the organ motion caused by respiratory function, multipurpose phantom and moving device was used and dosimetric measurements for dose distribution of the moving organs were conducted in this study. The purpose of our study was to evaluate how dose distributions are changed due to respiratory motion. Materials and Methods: A multipurpose phantom and a moving device were developed for the measurement of the dose distribution of the moving organ due to respiratory function. Acryl chosen design of the phantom was considered the most obvious choice for phantom material. For construction of the phantom, we used acryl and cork with density of $1.14g/cm^3,\;0.32g/cm^3$ respectively. Acryl and cork slab in the phantom were used to simulate the normal organ and lung respectively. The moving phantom system was composed of moving device, moving control system, and acryl and cork phantom. Gafchromic film and EDR2 film were used to measure dose ditrbutions. The moving device system may be driven by two directional step motors and able to perform 2 dimensional movements (x, z axis), but only 1 dimensional movement(z axis) was used for this study. Results: Larger penumbra was shown in the cork phantom than in the acryl phantom. The dose profile and isodose curve of Gafchromic EBT film were not uniform since the film has small optical density responding to the dose. As the organ motion was increased, the blurrings in penumbra, flatness, and symmetry were increased. Most of measurements of dose distrbutions, Gafchromic EBT film has poor flatness and symmetry than EDR2 film, but both penumbra distributions were more or less comparable. Conclusion: The Gafchromic EBT film is more useful as it does not need development and more radiation dose could be exposed than EDR2 film without losing film characteristics. But as response of the optical density of Gafchromic EBT film to dose is low, beam profiles have more fluctuation at Gafchromic EBT. If the multipurpose phantom and moving device are used for treatment Q.A, and its corrections are made, treatment quality should be improved for the moving organs.

  • PDF

Comparison of Recovery Coefficients for Correction of Reduced SUV by Partial Volume Effect and Organ Movements in PET/CT Images (PET/CT 영상의 부분체적효과와 장기의 움직임으로 인해 감소된 SUV의 보정을 위한 회복계수의 비교)

  • Kim, Youngjae;Park, Hoon-Hee;Lee, Joo-Young;So, Young;Lee, Jeong-Woo
    • Journal of radiological science and technology
    • /
    • v.45 no.3
    • /
    • pp.241-248
    • /
    • 2022
  • In this study, a recovery coefficient (RC) calculation was conducted that can correct the underestimation of the standardized uptake value (SUV) due to the partial volume effect (PVE) through phantom measurements and formulas. The experiment was conducted using a dynamic phantom capable of implement cranio-caudal movement at a respiratory rate of 15 times per minute along with the measured phantom experiment of the stopped state, and the RC of the moving state is calculated and compared. Ingenuity TF (Philips Healthcare, Netherland) was used as a positron emission tomography/computed tomography (PET/CT) device. PET-CT Phantom (Biodex Medical System, USA) was used as a phantom for measurement. A phantom image in a stationary state was acquired, and a moving phantom image was acquired using the AZ-733V Respiratory Phantom (Anzai Medical Co, Japan) capable of breathing movement in the cranio-caudal direction under the same acquisition parameters. For RC calculation, the sphere maximum radioactivity concentration and the background mean radioactivity concentration of the acquired images were measured, and the initially determined sphere and background radioactivity concentrations were calculated. The calculated RC was 0.08 to 0.72. The size of sphere smaller, it was confirmed that the RC reduced. And the RC in the moving state reduced than in the stationary state. As a result of this study, the change of the RC was confirmed according to the size of spheres and the phantom moving. Using the RC derived by implement movement of breathing with the respiratory phantom, it is possible to considering correction of underestimated SUV by the partial volume effect of PET images and the patient movements.

Development of Respiration Gating RT Technique using Moving Phantom and Ultrasound Sensor: a feasibility study (동 팬텀과 초음파 센서를 이용한 호흡운동 조절 방사선치료 기술 개발)

  • Lee, Suk;Lee, Sang-Hoon;Shin, Dong-Ho;Yang, Dae-Sik;Choi, Myung-Sun;Kim, Chul-Yong
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2004.11a
    • /
    • pp.122-125
    • /
    • 2004
  • In radiotherapy of tumors in liver, enough planning target volume (PTV) margins are necessary to compensate breathing-related movement of tumor volumes. To overcome the problems, this study aims to obtain patients' body movements by using a moving phantom and an ultrasonic sensor, and to develop respiration gating techniques that can adjust patients' beds by using reversed values of the data obtained. The phantom made to measure patients' body movements is composed of a microprocessor (BS II, 20 MHz, 8K Byte), a sensor (Ultra-Sonic, range 3 cm ${\sim}$3 m), host computer (RS232C) and stepping motor (torque 2.3Kg) etc., and the program to control and operate it was developed. The program allows the phantom to move within the maximum range of 2 cm, its movements and corrections to take place in order, and x, y and z to move successively. After the moving phantom was adjusted by entering random movement data(three dimensional data form with distance of 2cm), and the phantom movements were acquired using the ultra sonic sensor, the two data were compared and analyzed. And then, after the movements by respiration were acquired by using guinea pigs, the real-time respiration gating techniques were drawn by operating the phantom with the reversed values of the data. The result of analyzing the acquisition-correction delay time for the three types of data values and about each value separately shows that the data values coincided with one another within 1% and that the acquisition-correction delay time was obtained real-time (2.34 ${\times}$ 10$^{-4}$sec). This study successfully confirms the clinic application possibility of respiration gating techniques by using a moving phantom and an ultra sonic sensor. With ongoing development of additional analysis system, which can be used in real-time set-up reproducibility analysis, it may be beneficially used in radiotherapy of moving tumors.

  • PDF

Development of Respiration Gating RT Technique using Moving Phantom and Ultrasound Sensor: a feasibility study (동 팬텀과 초음파 센서를 이용한 호흡운동 조절 방사선치료 기술 개발)

  • Lee Suk;Lee Sang Hoon;Shin Dongho;Yang Dae Sik;Choi Myung Sun;Kim Chul Yong
    • Radiation Oncology Journal
    • /
    • v.22 no.4
    • /
    • pp.316-324
    • /
    • 2004
  • Purpose : In radiotherapy of tumors in liver, enough planning target volume (PTV) margins are necessary to compensate breathing-related movement of tumor volumes. To overcome the problems, this study aims to obtain patients' body movements by using a moving phantom and an ultrasonic sensor, and to develop respiration sating techniques that can adjust patients' beds by using reversed values of the data obtained. Materials and Methods : The phantom made to measure patients' body movements is composed of a microprocessor (BS II, 20 MHz, 8K Byte), a sensor (Ultra-Sonic, range $3\~3$ m), host computer (RS232C) and stepping motor (torque 2.3 Kg) etc., and the program to control and operate it was developed. The program allows the phantom to move within the maximum range of 2 cm, its movements and corrections to take place In order, and x, y and z to move successively. After the moving phantom was adjusted by entering random movement data (three dimensional data form with distance of 2 cm), and the phantom movements were acquired using the ultra sonic sensor, the two data were compared and analyzed. And then, after the movements by respiration were acquired by using guinea pigs, the real-time respiration gating techniques were drawn by operating the phantom with the reversed values of the data. Results : The result of analyzing the acquisition-correction delay time the three types of data values and about each value separately shows that the data values coincided with one another within $1\%$ and that the acquisition-correction delay time was obtained real-time $(2.34{\times}10^{-4}sec)$. Conclusion : This study successfully confirms the clinic application possibility of respiration gating techniques by using a moving phantom and an ultrasonic sensor. With ongoing development of additional analysis system, which can be used in real-time set-up reproducibility analysis, it may be beneficially used in radiotherapy of moving tumors.

Estimation of CyberKnife Respiratory Tracking System Using Moving Phantom (동적 팬톰을 이용한 사이버나이프 호흡동기 추적장치의 위치 정확성 평가)

  • Seo, Jae-Hyuk;Kang, Young-Nam;Jang, Ji-Sun;Shin, Hun-Joo;Jung, Ji-Young;Choi, Byong-Ock;Choi, Ihl-Bohng;Lee, Dong-Joon;Kwon, Soo-Il;Lim, Jong-Soo
    • Progress in Medical Physics
    • /
    • v.20 no.4
    • /
    • pp.324-330
    • /
    • 2009
  • In this study, we evaluated accuracy and usefulness of CyberKnife Respiratory Tracking System ($Synchrony^{TM}$, Accuray, USA) about a moving during stereotactic radiosurgery. For this study, we used moving phantom that can move the target. We also used Respiratory Tracking System called Synchrony of the Cyberknife in order to track the moving target. For treatment planning of the moving target, we obtained an image using 4D-CT. To measure dose distribution and point dose at the moving target, ion chamber (0.62 cc) and gafchromic EBT film were used. We compared dose distribution (80% isodose line of prescription dose) of static target to that of moving target in order to evaluate the accuracy of Respiratory Tracking System. We also measured the point dose at the target. The mean difference of synchronization for TLS (target localization system) and Synchrony were $11.5{\pm}3.09\;mm$ for desynchronization and $0.14{\pm}0.08\;mm$ for synchronization. The mean difference between static target plan and moving target plan using 4D CT images was $0.18{\pm}0.06\;mm$. And, the accuracy of Respiratory Tracking System was less 1 mm. Estimation of usefulness in Respiratory Tracking System was $17.39{\pm}0.14\;mm$ for inactivity and $1.37{\pm}0.11\;mm$ for activity. The mean difference of absolute dose was $0.68{\pm}0.38%$ in static target and $1.31{\pm}0.81%$ in moving target. As a conclusion, when we treat about the moving target, we consider that it is important to use 4D-CT and the Respiratory Tracking System. In this study, we confirmed the accuracy and usefulness of Respiratory Tracking System in the Cyberknife.

  • PDF

Defining the Tumour and Gross Tumor Volume using PET/CT : Simulation using Moving Phantom (양전자단층촬영장치에서 호흡의 영향에 따른 종양의 변화 분석)

  • Jin, Gye-Hwan
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.7
    • /
    • pp.935-942
    • /
    • 2021
  • Involuntary movement of internal organs by respiration is a factor that greatly affects the results of radiotherapy and diagnosis. In this study, a moving phantom was fabricated to simulate the movement of an organ or a tumor according to respiration, and 18F-FDG PET/CT scan images were acquired under various respiratory simulating conditions to analyze the movement range of the tumor movement by respiration, the level of artifacts according to the size of the tumor and the maximum standardized uptake value (SUVmax). Based on Windows CE 6.0 as the operating system, using electric actuator, electric actuator positioning driver, and programmable logic controller (PLC), the position and speed control module was operated normally at a moving distance of 0-5 cm and 10, 15, and 20 reciprocations. For sphere diameters of 10, 13, 17, 22, 28, and 37 mm at a delay time of 100 minutes, 80.4%, 99.5%, 107.9%, 113.1%, 128.0%, and 124.8%, respectively were measured. When the moving distance was the same, the difference according to the respiratory rate was insignificant. When the number of breaths is 20 and the moving distance is 1 cm, 2 cm, 3 cm, and 5 cm, as the moving distance increased at the sphere diameters of 10, 13, 17, 22, 28, and 37 mm, the ability to distinguish images from smaller spheres deteriorated. When the moving distance is 5 cm compared to the still image, the maximum values of the standard intake coefficient were 18.0%, 23.7%, 29.3%, 38.4%, 49.0%, and 67.4% for sphere diameters of 10, 13, 17, 22, 28, and 37 mm, respectively.

Verification of X-sight Lung Tracking System in the CyberKnife (사이버나이프에서 폐종양 추적 시스템의 정확도 분석)

  • Huh, Hyun-Do;Choi, Sang-Hyoun;Kim, Woo-Chul;Kim, Hun-Jeong;Kim, Seong-Hoon;Cho, Sam-Ju;Min, Chul-Ki;Cho, Kwang-Hwan;Lee, Sang-Hoon;Choi, Jin-Ho;Lim, Sang-Wook;Shin, Dong-Oh
    • Progress in Medical Physics
    • /
    • v.20 no.3
    • /
    • pp.174-179
    • /
    • 2009
  • To track moving tumor in real time, CyberKnife system imports a technique of the synchrony respiratory tracking system. The fiducial marker which are detectable in X-ray images were demand in CyberKnife Robotic radiosurgery system. It issued as reference markers to locate and track tumor location during patient alignment and treatment delivery. Fiducial marker implantation is an invasive surgical operation that carries a relatively high risk of pneumothorax. Most recently, it was developed a direct lung tumor registration method that does not require the use of fiducials. The purpose of this study is to measure the accuracy of target applying X-sight lung tracking using the Gafchromic film in dynamic moving thorax phantom. The X-sight Lung Tracking quality assurance motion phantom simulates simple respiratory motion of a lung tumor and provides Gafchromic dosimetry film-based test capability at locations inside the phantom corresponding to a typical lung tumor. The total average error for the X-sight Lung Tracking System with a moving target was $0.85{\pm}0.22$ mm. The results were considered reliable and applicable for lung tumor treatment in CyberKnife radiosurgery system. Clinically, breathing patterns of patients may vary during radiation therapy. Therefore, additional studies with a set real patient data are necessary to evaluate the target accuracy for the X-sight Lung Tracking system.

  • PDF