• 제목/요약/키워드: Moving Particle Simulation

검색결과 66건 처리시간 0.02초

파손된 탱크의 기름 유출량 산정을 위한 2차원 입자법 시뮬레이션 (Prediction of Oil Amount Leaked from Damaged Tank Using 2-dimensional Particle Simulation)

  • 남정우;황성철;박종천
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2011년 춘계학술대회논문집
    • /
    • pp.278-285
    • /
    • 2011
  • In the present study, the numerical prediction of the oil amount leaked from the hole of a damaged tank is investigated using the improved MPS (Moving Particle Semi-implicit) method, which was originally proposed by Koshizuka and Oka (1996) for incompressible flow. The governing equations, which consist of the continuity and Navier-Stokes equations, are solved by Lagrangian moving particles, and all terms expressed by differential operators should be replaced by the particle interaction models based on a Kernel function. The simulation results are validated though the comparison with the analytic solution based on Torricelli's equilibrium relation. Furthermore, a series of numerical simulations under the various conditions are performed in order to estimate more accurately the initial amount of leaked oil.

  • PDF

댐 붕괴에 의한 토양 거동 시뮬레이션 (Simulation of Soil Behavior due to Dam Break Using Moving Particle Simulation)

  • 김경성;박동우
    • 한국해양공학회지
    • /
    • 제31권6호
    • /
    • pp.388-396
    • /
    • 2017
  • A Lagrangian approach based computational fluid dynamics (CFD) was used to simulate large and/or sharp deformations and fragmentations of interfaces, including free surfaces, through tracing each particle with physical quantities. According to the concept of the particle-based CFD method, it is possible to apply it to both fluid particles and solid particles such as sand, gravel, and rock. However, the presence of more than two different phases in the same domain can make it complicated to calculate the interaction between different phases. In order to solve multiphase problems, particle interaction models for multiphase problems, including surface tension, buoyancy-correction, and interface boundary condition models, were newly adopted into the moving particle semi-implicit (MPS) method. The newly developed MPS method was used to simulate a typical validation problem involving dam breaking. Because the soil and other particles, excluding the water, may have different viscosities, various viscosity coefficients were applied in the simulations for validation. The newly developed and validated MPS method was used to simulate the mobile beds induced by broken dam flows. The effects of the viscosity on soil particles were also investigated.

자유표면 유동해석을 위한 WMLS 기반 입자법 기술 개발 (Development of WMLS-based Particle Simulation Method for Solving Free-Surface Flow)

  • 남정우;박종천;박지인;황성철;허재경;정세민
    • 한국해양공학회지
    • /
    • 제28권2호
    • /
    • pp.93-101
    • /
    • 2014
  • In general, particle simulation methods such as the MPS(Moving Particle Simulation) or SPH(Smoothed Particle Hydrodynamics) methods have some serious drawbacks for pressure solutions. The pressure field shows spurious high fluctuations both temporally and spatially. It is well known that pressure fluctuation primarily occurs because of the numerical approximation of the partial differential operators. The MPS and SPH methods employ a pre-defined kernel function in the approximation of the gradient and Laplacian operators. Because this kernel function is constructed artificially, an accurate solution cannot be guaranteed, especially when the distribution of particles is irregular. In this paper, we propose a particle simulation method based on the moving least-square technique for solving the partial differential operators using a Taylor-series expansion. The developed method was applied to the hydro-static pressure and dam-broken problems to validate it.

GIS내 금속이물 존재시 절연특성 (The Insulation Characteristics by Conducting Particle in GIS)

  • 조국희;김재철;곽희로
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 춘계학술대회 논문집 전기설비전문위원
    • /
    • pp.105-108
    • /
    • 2004
  • This paper describes the influence of conducting particle in the coaxial cylindrical electrodes under alternating voltage condition investigated using breakdown electric field and electro magnetics simulation method. Simulated particle-location in GIS chamber were the particle on electrode, the particle on enclosure and free moving particle. As results, it was founded that in case of breakdown electric field of the GIS chamber, breakdown electric field of particle on electrode was the lowest, that of free moving particle was middle and that of particle on enclosure was the highest. And in case of the electric field analysis with particle locations, electric field of particle on electrode was the highest that of lifted particle was middle and that of particle on enclosure was the lowest. This results can offer a practical reference ra the insulation design of domestic GIS.

  • PDF

Moving particle simulation for a simplified permeability model of pervious concrete

  • Kamalova, Zilola;Hatanaka, Shigemitsu
    • Computers and Concrete
    • /
    • 제24권6호
    • /
    • pp.571-578
    • /
    • 2019
  • This study aimed to investigate the permeable nature of pervious concretes (PC) through the moving particle simulation (MPS) method. In the simulation, the complex structure of a pervious concrete was virtually demonstrated as a lattice model (LM) of spherical beads, where the test of permeability was conducted. Results of the simulation were compared with the experimental ones for validation. As a result, MPS results showed the permeability index of the LM as almost twice as big as the actual PCs. A proposed virtual model was created to prevent the stuck of water flow in the MPS simulation of PC or LM. Successful simulation results were demonstrated with the model.

파랑 중 오일붐 성능 예측을 위한 2차원 입자법 시뮬레이션 (2-Dimensional Moving Particle Simulation for Prediction of Oil Boom Performance in Waves)

  • 남정우;박지인;황성철;박종천;정세민
    • 한국해양공학회지
    • /
    • 제27권4호
    • /
    • pp.90-97
    • /
    • 2013
  • Oil booms are one of the most widely used types of equipment for the protection of coastal areas against oil spills. In some situations, however, there are several types of oil leaks from the oil boom. Important factors regarding these phenomena include the surrounding ocean environment, such as waves, the density and viscosity of oil, the length of the oil boom skirt, etc. To estimate the performance of the oil boom, it is necessary to predict the behavior of the spilled oil and oil boom. In the present study, the prediction of oil boom performance in waves was carried out using the Pusan-National-University-modified Moving Particle Semi-implicit (PNU-MPS) method, which is an improved version of the original MPS proposed by Koshizuka and Oka (1996). The governing equations, which consist of continuity and Navier-Stokes equations, are solved by Lagrangian moving particles, and all terms expressed by differential operators in the governing equations are replaced by the particle interaction models based on a kernel function. The simulation results were validated through a comparison with the results of Violeau et al. (2007)..

다상유동형 입자법을 이용한 Rayleigh-Taylor 불안정성의 수치해석 (Numerical Study on Rayleigh-Taylor Instability Using a Multiphase Moving Particle Simulation Method)

  • 김경성;구본국;김무현;박종천;최한석;조용진
    • 한국해양환경ㆍ에너지학회지
    • /
    • 제20권1호
    • /
    • pp.37-44
    • /
    • 2017
  • 하나의 시스템 내에 2개 이상의 상이 다른 유체가 존재할 시에는 다상유동에 의한 복장성이 존재하며, 이는 해석의 어려움이 따른다. 두 개 이상의 상이 다른 다상유동은 유동 및 경계면에 영향을 끼치지 때문에, 불안정성과 같은 비선형 유동이 나타나게 된다. 여러 종류의 불안정성 중 레일리히-테일러 불안정성은 대표적인 예로 알려져 있다. 본 연구에서는 밀도차가 레일리히-테일러 불안정성에 미치는 영향을 조사하기 위해 다양한 Atwood 수를 선정하였으며, 초기 경계면 형상 역시 다양한 형태를 설정하고 시뮬레이션 하였다. 본 연구에서 사용된 입자법인 MPS(Moving particle simulation)은 이러한 다상유동에서 널리 쓰이지는 않았으나, 다상유동을 위한 입자간 상호 연성 모델인 자가-부력 항, 표면 장력 항과 경계면 경계 조건 항을 추가로 사용하여 수치해석이 가능하게 하였다. 본 연구에서 새로이 개발된 다상유동형 입자법을 이용하여 고려된 경우들에 대해 수치해석을 수행하였으며, 각각의 결과들을 비교 분석하였다. 또한 레일리히-테일러 불안정성에 기인한 유동의 속도를 측정하여 포텐셜 기반의 이론값과의 비교를 통해 경향성이 일치함을 알 수 있었다. 이론값과의 크기의 차는 포텐셜 기반의 이론값에서는 고려가 힘든 비선형성에 기인한다고 사료된다.

Failure simulation of ice beam using a fully Lagrangian particle method

  • Ren, Di;Park, Jong-Chun;Hwang, Sung-Chul;Jeong, Seong-Yeob;Kim, Hyun-Soo
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제11권2호
    • /
    • pp.639-647
    • /
    • 2019
  • A realistic numerical simulation technology using a Lagrangian Fluid-Structure Interaction (FSI) model was combined with a fracture algorithm to predict the fluid-ice-structure interaction. The failure of ice was modeled as the tensile fracture of elastic material by applying a novel FSI model based on the Moving Particle Semi-implicit (MPS) method. To verify the developed fracture algorithm, a series of numerical simulations for 3-point bending tests with an ice beam were performed and compared with the experiments carried out in an ice room. For application of the developed FSI model, a dropping water droplet hitting a cantilever ice beam was simulated with and without the fracture algorithm. The simulation showed that the effects of fracture which can occur in the process of a FSI simulation can be studied.

$SF_6$가스 내 금속이물 존재시 절연특성 및 전계해석 (The Insulation Characteristics and The Electric Field Anlaysis by Conducting Particle in $SF_6$ Gas)

  • 조국희;이동준;곽희로
    • 조명전기설비학회논문지
    • /
    • 제15권5호
    • /
    • pp.14-19
    • /
    • 2001
  • 전계해석법을 이용하여 나타내었다. 이때 모의한 GIS 챔버내 금속이물의 위치는 전극부착시, 외함부착시 그리고 자유운동시로 하였다. 그 결과 GIS챔버의 절연파괴전계의 경우, 전극에 파티클 부착시가 가장 작게 나타났고, 파티클 자유운동시가 중간, 외함에 파티클 부착시가 가장 작게 나타남을 알 수 있었다. 또한 파티클 위치에 따른 전계해석의 경우 전극에 파티클 부착시가 가장 크게 나타났고, 파티클 자유운동시가 중간, 외함에 파티클 부착시가 가장 작게 나타났다. 이 결과는 국내 GIS의 절연설계에 설제적인 참고자료가 될 것으로 사료된다.

  • PDF

사각 탱크 내 슬로싱 해석을 위한 입자법 시뮬레이션 (Particle-based Simulation for Sloshing in a Rectangular Tank)

  • 황성철;이병혁;박종천;성홍근
    • 한국해양공학회지
    • /
    • 제24권5호
    • /
    • pp.31-38
    • /
    • 2010
  • The Floating storage and re-gasification unit (FSRU), which has large cargo storage tanks, is a floating liquefied natural gas (LNG) import terminal. The sloshing motion in tanks that are partially filled with LNG can cause impact pressure on the containment system and affect the global motion of the FSRU. Therefore, the accurate prediction of sloshing motion has been a significant issue in the offshore gas production industry. In this paper, a particle method based on the moving particle semi-implicit (MPS) method proposed by Koshizuka and Oka (1996) has been modified to predict sloshing motion accurately in a rectangular tank with the filling ratio of water. The simulation results, including the violent sloshing of the fluid, were validated by comparison with the original MPS method.