• Title/Summary/Keyword: Moving Object Management System

Search Result 87, Processing Time 0.029 seconds

Design of A Moving Object Management System for Tracking Vehicle Location (차량 위치 추적을 위한 이동 객체 관리 시스템의 설계)

  • Ahn, Yoon-Ae;Kim, Dong-Ho;Ryu, Keun-Ho
    • The KIPS Transactions:PartD
    • /
    • v.9D no.5
    • /
    • pp.827-836
    • /
    • 2002
  • Moving object management systems manage spatiotemporal data, which change their location over tine such as people, animals, and cars. These moving object management systems can be applied to vehicle location tracking, digital battlefield, location-based service, and so on. The existing moving object management systems only manage past or future location of the moving objects separately. Therefore, they cannot suggest estimation method of uncertain past or future location of the moving objects. In this paper, we propose a moving object management system, which not only manages historical data of the moving objects, but also predicts past and future location of the moving objects using historical data stored in database. We define the moving objects for vehicle location tracking and propose a moving object database structure. Finally, we suggest an execution model of the proposed system and apply the execution model to a virtual scenario for vehicle tracking.

Design and implementation of a Moving Object Engine

  • Lee Hyun Ah;Kim Jin Suk
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.272-275
    • /
    • 2004
  • Recently, the services using position information of moving objects is embossed. Theses services needs the moving objects databases to manage moving object data with efficiency. To build the moving object databases, we must develop the moving object engine to mange, store, and search the spatio temporal data of moving object. The moving object engine has to support query syntax to search data that suitable for user need like LBS, Telematics, ITS, vehicle management system. In this paper, we design and implement the moving object engine to support service with moving object data. The moving object engine is able to support system environment that users are able to get the moving object data easily even they don't know complex data structure.

  • PDF

EVALUATING AND EXTENDING SPATIO-TEMPORAL DATABASE FUNCTIONALITIES FOR MOVING OBJECTS

  • Dodge Somayeh;Alesheikh Ali A.
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.778-784
    • /
    • 2005
  • Miniaturization of computing devices, and advances in wireless communication and positioning systems will create a wide and increasing range of database applications such as location-based services, tracking and transportation systems that has to deal with Moving Objects. Various types of queries could be posted to moving objects, including past, present and future queries. The key problem is how to model the location of moving objects and enable Database Management System (DBMS) to predict the future location of a moving object. It is obvious that there is a need for an innovative, generic, conceptually clean and application-independent approach for spatio-temporal handling data. This paper presents behavioral aspect of the spatio-temporal databases for managing and querying moving objects. Our objective is to impelement and extend the Spatial TAU (STAU) system developed by Dr.Pelekis that provides spatio-temporal functionality to an Object-Relational Database Management System to support modeling and querying moving objecs. The results of the impelementation are demonstrated in this paper.

  • PDF

A Study on Automatic Inspection Algorithm for Moving Object using by Vision System (비전시스템을 이용한 이동물체 자동검사에 관한 연구)

  • Cho, Young Seok
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.5 no.1
    • /
    • pp.99-105
    • /
    • 2009
  • Recently the research is much interested in about the inspection system using by computer vision system. In this paper, we deal with shape inspection technique for moving to be long and narrow object on conveyor belt. first, we are acquired for moving object on conveyor belt. then the object segmentation is using by color information for background and object. the object position be calculated by horizontal and a vertical histogram. second, we are checked for two hole in front part, widths and top/bottom side information in middle part, and finally checking for two holes in rear part. The performance of our proposed model is evaluated by experiments, within error of 1㎜, and can be checking to 17 object /min.

Moving Object Management System for Battlefield Simulation

  • Ahn, Yoon-Ae
    • Journal of the Korean Data and Information Science Society
    • /
    • v.15 no.3
    • /
    • pp.663-675
    • /
    • 2004
  • A battlefield simulation is the evaluation and analysis of the battlefield area, based on the data for terrain, climate, unit's maneuver and tactics basically required in battlefield simulation. Because it is difficult for the military authorities to collect all of the information perfectly for the reason of communication technology, jamming, and tactics, the military authorities need the future moving status for the target units by using acquired moving information. Therefore, we propose a moving object management system that concurrently provides domain reasoning function for the battlefield simulation. In order to implement the proposed system, we show the data modeling of the moving object for the battlefield simulation, and propose an inference engine using domain rule base and spatiotemporal operation. Also, we analyze the query response rate by inference function to verify domain reasoning of the implemented system.

  • PDF

Design and Implementation of the Spatio-Temporal DSMS for Moving Object Data Streams (이동체 데이타 스트림을 위한 시공간 DSMS의 설계 및 구현)

  • Lee, Ki-Young;Kim, Joung-Joon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.8 no.5
    • /
    • pp.159-166
    • /
    • 2008
  • Recently, according to the rapid development of location positioning technology and wireless communications technology and increasement of usage of moving object data, many researches and developments on the real-time locating systems which provides real time service of moving object data stream are under proceeding. However, MO (Moving Object) DBMS used based system in the in these systems is the inefficient management of moving object data streams, and the existing DSMS (Data Stream Management System) has problems that spatio-temporal data are not handled efficiently. Therefore, in this thesis, we designed and implemented spatio-temporal DSMS for efficient real-time management of moving object data stream. This thesis implemented spatio-temporal DSMS based STREAM (STanford stREam dAta Manager) of Stanford University is supporting real-time management of moving object data stream and spatio-temproal query processing and filtering for reduce the input loading. Specifically, spatio-temporal operators of the spatio-temporal DSMS support standard interface of SQL form which extended "Simple Feature Specification for SQL" standard specifications presented by OGC for compatibility. Finally, implemented spatio-temporal DSMS in this thesis, proved the effectiveness of the system that as applied real-time monitoring areas that require real-time locating of object data stream DSMS.

  • PDF

OPTIMAL ROUTE DETERMINATION TECHNOLOGY BASED ON TRAJECTORY QUERYING MOVING OBJECT DATABASE

  • Min Kyoung-Wook;Kim Ju-Wan;Park Jong-Hyun
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.317-320
    • /
    • 2005
  • The LBS (Location-Based Services) are valuable information services combined the location of moving object with various contents such as map, POI (point of Interest), route and so on. The must general service of LBS is route determination service and its applicable parts are FMS (Fleet Management System), travel advisory system and mobile navigation system. The core function of route determination service is determination of optimal route from source to destination in various environments. The MODB (Moving Object Database) system, core part of LBS composition systems, is able to manage current or past location information of moving object and massive trajectory information stored in MODB is value-added data in CRM, ERP and data mining part. Also this past trajectory information can be helpful to determine optimal route. In this paper, we suggest methods to determine optimal route by querying past trajectory information in MODB system and verify the effectiveness of suggested method.

  • PDF

Design and Implementation of a Vehicle Management System for Effective Retrieval of Vehicle Locations (효과적인 차량 위치 검색을 위한 차량 관리 시스템의 설계 및 구현)

  • Lee Eung Jae;Oh Jun Seok;Jung Young Jin;Nam Kwang Woo;Lee Bong Gyou;Ryu Keun Ho
    • Journal of KIISE:Databases
    • /
    • v.32 no.1
    • /
    • pp.71-85
    • /
    • 2005
  • Various researches on moving object modeling, uncertainty processing, and moving object indexing have been tarried out in the field of moving object databases. However. previous location tracking systems cannot efficiently retrieve location data of vehicles, because they manage all location information of vehicles using the conventional database. In this paper, we design the vehicle location management systen that is able to manage and retrieve vehicle locations efficiently in mobile environment. The proposed system consists of a server for managing vehicle locations and mobile clients. The system is able to not only process spatiotemporal queries related to locations of moving vehicles but also Provide moving vehicles' locations which are not stored in the system. The system is also able to manage vehicle location data effectively using a moving object index.

A Moving Object Management System for Location Based Service (위치기반서비스를 위한 이동 객체 관리 시스템)

  • 안윤애
    • Journal of the Korea Computer Industry Society
    • /
    • v.4 no.12
    • /
    • pp.986-998
    • /
    • 2003
  • A moving object management system manages spatiotemporal data o( moving objects which change their location continuously over time such as people, animals, cars, cellular phones, and so on. This system can be applied to location based services such as vehicle tracking systems, digital battlefields, and animal habitat management. The existing systems neither suggest location estimation of the moving objects nor handle the loss data of the moving objects in real-time environment. Thus the existing systems have problems that they give the uncertain results of the query processing to the user query. In this paper, we design a new moving object management system. The proposed system processes the past and future location information of the moving objects by the location change function. Also we propose a location triggering method, which supplements loss of the location data of the mobile objects in real-time environment. Finally, we implement and apply the proposed system to a vehicle tracking system based on PDA. Thus we ascertain that the proposed system can be applied to the location based system.

  • PDF

A Data Model for Past and Future Location Process of Moving Objects (이동 객체의 과거 및 미래 위치 연산을 위한 데이터 모델)

  • Jang, Seung-Youn;Ahn, Yoon-Ae;Ryu, Keun-Ho
    • The KIPS Transactions:PartD
    • /
    • v.10D no.1
    • /
    • pp.45-56
    • /
    • 2003
  • In the wireless environment, according to the development of technology, which is able to obtain location information of spatiotemporal moving object, the various application systems are developed such as vehicle tracking system, forest fire management system and digital battle field system. These application systems need the data model, which is able to represent and process the continuous change of moving object. However, if moving objects are expressed by a relational model, there is a problem which is not able to store all location information that changed per every time. Also, existing data models of moving object have a week point, which constrain the query time to the time that is managed in the database such as past or current and near future. Therefore, in this paper, we propose a data model, which is able to not only express the continuous movement of moving point and moving region but also process the operation at all query time by using shape-change process and location determination functions for past and future. In addition, we apply the proposed model to forest fire management system and evaluate the validity through the implementation result.