• Title/Summary/Keyword: Moving Object Location Data

Search Result 139, Processing Time 0.024 seconds

Design of A Moving Object Management System for Tracking Vehicle Location (차량 위치 추적을 위한 이동 객체 관리 시스템의 설계)

  • Ahn, Yoon-Ae;Kim, Dong-Ho;Ryu, Keun-Ho
    • The KIPS Transactions:PartD
    • /
    • v.9D no.5
    • /
    • pp.827-836
    • /
    • 2002
  • Moving object management systems manage spatiotemporal data, which change their location over tine such as people, animals, and cars. These moving object management systems can be applied to vehicle location tracking, digital battlefield, location-based service, and so on. The existing moving object management systems only manage past or future location of the moving objects separately. Therefore, they cannot suggest estimation method of uncertain past or future location of the moving objects. In this paper, we propose a moving object management system, which not only manages historical data of the moving objects, but also predicts past and future location of the moving objects using historical data stored in database. We define the moving objects for vehicle location tracking and propose a moving object database structure. Finally, we suggest an execution model of the proposed system and apply the execution model to a virtual scenario for vehicle tracking.

OPTIMAL ROUTE DETERMINATION TECHNOLOGY BASED ON TRAJECTORY QUERYING MOVING OBJECT DATABASE

  • Min Kyoung-Wook;Kim Ju-Wan;Park Jong-Hyun
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.317-320
    • /
    • 2005
  • The LBS (Location-Based Services) are valuable information services combined the location of moving object with various contents such as map, POI (point of Interest), route and so on. The must general service of LBS is route determination service and its applicable parts are FMS (Fleet Management System), travel advisory system and mobile navigation system. The core function of route determination service is determination of optimal route from source to destination in various environments. The MODB (Moving Object Database) system, core part of LBS composition systems, is able to manage current or past location information of moving object and massive trajectory information stored in MODB is value-added data in CRM, ERP and data mining part. Also this past trajectory information can be helpful to determine optimal route. In this paper, we suggest methods to determine optimal route by querying past trajectory information in MODB system and verify the effectiveness of suggested method.

  • PDF

Development of a Location Data Management System for Mass Moving Objects (대용량 이동 객체 위치 데이타 관리 시스템의 개발)

  • Kim, Dong-Oh;Ju, Sung-Wan;Jang, In-Sung;Han, Ki-Joon
    • Journal of Korea Spatial Information System Society
    • /
    • v.7 no.1 s.13
    • /
    • pp.63-76
    • /
    • 2005
  • Recently, the wireless positioning techniques and mobile computing techniques were developed with rapidly to use location data of moving objects. Also, the demand for LBS(Location Based Services) which uses location data of moving objects is increasing rapidly. In order to support various LBS, a system that can store and retrieve location data of moving objects efficiently is required necessarily. The more the number of moving objects is numerous and the more periodical sampling of locations is frequent, the more location data of moving objects become very large. Hence the system should be able to efficiently manage mass location data, support various spatio-temporal queries for LBS, and solve the uncertainty problem of moving objects. Therefore, in this paper, we presented a hash technique, a clustering technique and a trajectory search technique to manage location data of moving objects efficiently And, we have developed a Mass Moving Object Location Data Management System, which is a disk-based system, that can store and retrieve location data of mass moving objects efficiently and support the query for spatio-temporal data and the past location data with uncertainty. By analying the performance of the Mass Moving Object Locations Management system and the SQL-Server, we can find that the performance of our system for storing and retrieving location data of moving objects was about 5% and 300% better than the SQL-Server, repectively.

  • PDF

The Distributed Management System of Moving Objects for LBS

  • Jang, In-Sung;Cho, Dae-Soo;Park, Jong-Hyun
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.163-167
    • /
    • 2002
  • Recently, owing to performance elevation of telecommunication technology, increase of wireless internet's subscriber and diffusion of wireless device, Interest about LBS (Location Based Service) which take advantage of user's location information and can receive information in concerning with user's location is increasing rapidly. So, MOMS (Moving Object Management System) that manage user's location information is required compulsorily to provide location base service. LBS of childhood such as service to find a friend need only current location, but to provide high-quality service in connection with Data Mining, CRM, We must be able to manage location information of past. In this paper, we design distributed manage system to insert and search Moving Object in a large amount. It has been consisted of CLIM (Current Location Information Manager), PLIM (Past-Location Information Manager) and BLIM (Distributed Location Information Manager). CLIM and PLIM prove performance of searching data by using spatiotemporal-index. DLIM distribute an enormous amount of location data to various database. Thus it keeps load-balance, regulates overload and manage a huge number of location information efficiently.

  • PDF

A Data Model for Past and Future Location Process of Moving Objects (이동 객체의 과거 및 미래 위치 연산을 위한 데이터 모델)

  • Jang, Seung-Youn;Ahn, Yoon-Ae;Ryu, Keun-Ho
    • The KIPS Transactions:PartD
    • /
    • v.10D no.1
    • /
    • pp.45-56
    • /
    • 2003
  • In the wireless environment, according to the development of technology, which is able to obtain location information of spatiotemporal moving object, the various application systems are developed such as vehicle tracking system, forest fire management system and digital battle field system. These application systems need the data model, which is able to represent and process the continuous change of moving object. However, if moving objects are expressed by a relational model, there is a problem which is not able to store all location information that changed per every time. Also, existing data models of moving object have a week point, which constrain the query time to the time that is managed in the database such as past or current and near future. Therefore, in this paper, we propose a data model, which is able to not only express the continuous movement of moving point and moving region but also process the operation at all query time by using shape-change process and location determination functions for past and future. In addition, we apply the proposed model to forest fire management system and evaluate the validity through the implementation result.

Continuous Location Tracking Algorithm for Moving Position Data

  • Ahn, Yoon-Ae
    • Journal of the Korean Data and Information Science Society
    • /
    • v.19 no.3
    • /
    • pp.979-994
    • /
    • 2008
  • Moving objects are spatio-temporal data that change their location or shape continuously over time. Generally, if continuously moving objects are managed by a conventional database management system, the system cannot properly process the past and future location which is not stored in the database. Up to now, for the purpose of location tracking which is not stored, the linear interpolation to estimate the past location has been usually used. It is suitable for the moving objects on linear route, not curved route. In this paper, we propose a past location tracking algorithm for a moving object on curved routes, and also suggest a future location tracking algorithm using some past location information. We found that the proposed location tracking algorithm has higher accuracy than the linear interpolation function.

  • PDF

Design and Implementation of a Vehicle Management System for Effective Retrieval of Vehicle Locations (효과적인 차량 위치 검색을 위한 차량 관리 시스템의 설계 및 구현)

  • Lee Eung Jae;Oh Jun Seok;Jung Young Jin;Nam Kwang Woo;Lee Bong Gyou;Ryu Keun Ho
    • Journal of KIISE:Databases
    • /
    • v.32 no.1
    • /
    • pp.71-85
    • /
    • 2005
  • Various researches on moving object modeling, uncertainty processing, and moving object indexing have been tarried out in the field of moving object databases. However. previous location tracking systems cannot efficiently retrieve location data of vehicles, because they manage all location information of vehicles using the conventional database. In this paper, we design the vehicle location management systen that is able to manage and retrieve vehicle locations efficiently in mobile environment. The proposed system consists of a server for managing vehicle locations and mobile clients. The system is able to not only process spatiotemporal queries related to locations of moving vehicles but also Provide moving vehicles' locations which are not stored in the system. The system is also able to manage vehicle location data effectively using a moving object index.

EVALUATING AND EXTENDING SPATIO-TEMPORAL DATABASE FUNCTIONALITIES FOR MOVING OBJECTS

  • Dodge Somayeh;Alesheikh Ali A.
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.778-784
    • /
    • 2005
  • Miniaturization of computing devices, and advances in wireless communication and positioning systems will create a wide and increasing range of database applications such as location-based services, tracking and transportation systems that has to deal with Moving Objects. Various types of queries could be posted to moving objects, including past, present and future queries. The key problem is how to model the location of moving objects and enable Database Management System (DBMS) to predict the future location of a moving object. It is obvious that there is a need for an innovative, generic, conceptually clean and application-independent approach for spatio-temporal handling data. This paper presents behavioral aspect of the spatio-temporal databases for managing and querying moving objects. Our objective is to impelement and extend the Spatial TAU (STAU) system developed by Dr.Pelekis that provides spatio-temporal functionality to an Object-Relational Database Management System to support modeling and querying moving objecs. The results of the impelementation are demonstrated in this paper.

  • PDF

A Moving Object Management System for Location Based Service (위치기반서비스를 위한 이동 객체 관리 시스템)

  • 안윤애
    • Journal of the Korea Computer Industry Society
    • /
    • v.4 no.12
    • /
    • pp.986-998
    • /
    • 2003
  • A moving object management system manages spatiotemporal data o( moving objects which change their location continuously over time such as people, animals, cars, cellular phones, and so on. This system can be applied to location based services such as vehicle tracking systems, digital battlefields, and animal habitat management. The existing systems neither suggest location estimation of the moving objects nor handle the loss data of the moving objects in real-time environment. Thus the existing systems have problems that they give the uncertain results of the query processing to the user query. In this paper, we design a new moving object management system. The proposed system processes the past and future location information of the moving objects by the location change function. Also we propose a location triggering method, which supplements loss of the location data of the mobile objects in real-time environment. Finally, we implement and apply the proposed system to a vehicle tracking system based on PDA. Thus we ascertain that the proposed system can be applied to the location based system.

  • PDF

Design and Implementation of the Extended SLDS for Real-time Location Based Services (실시간 위치 기반 서비스를 위한 확장 SLDS 설계 및 구현)

  • Lee, Seung-Won;Kang, Hong-Koo;Hong, Dong-Suk;Han, Ki-Joon
    • Journal of Korea Spatial Information System Society
    • /
    • v.7 no.2 s.14
    • /
    • pp.47-56
    • /
    • 2005
  • Recently, with the rapid development of mobile computing, wireless positioning technologies, and the generalization of wireless internet, LBS (Location Based Service) which utilizes location information of moving objects is serving in many fields. In order to serve LBS efficiently, the location data server that periodically stores location data of moving objects is required. Formerly, GIS servers have been used to store location data of moving objects. However, GIS servers are not suitable to store location data of moving objects because it was designed to store static data. Therefore, in this paper, we designed and implemented an extended SLDS(Short-term Location Data Subsystem) for real-time Location Based Services. The extended SLDS is extended from the SLDS which is a subsystem of the GALIS(Gracefully Aging Location Information System) architecture that was proposed as a cluster-based distributed computing system architecture for managing location data of moving objects. The extended SLDS guarantees real-time service capabilities using the TMO(Time-triggered Message-triggered Object) programming scheme and efficiently manages large volume of location data through distributing moving object data over multiple nodes. The extended SLDS also has a little search and update overhead because of managing location data in main memory. In addition, we proved that the extended SLDS stores location data and performs load distribution more efficiently than the original SLDS through the performance evaluation.

  • PDF