• Title/Summary/Keyword: Moving Object

Search Result 1,603, Processing Time 0.044 seconds

Realization for Moving Object Sensing and Path Tracking System using Stereo Line CCDs (스테레오 라인 CCD를 이용한 이동객체감지 및 경로추적 시스템 구현)

  • Ryu, Kwang-Ryol;Kim, Young-Bin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.11
    • /
    • pp.2050-2056
    • /
    • 2008
  • A realization for moving object sensing and tracking system in two dimensional plane using stereo line CCDs and lighting source is presented in this paper. The system is realized that instead of processing camera images directly, two line CCD sensor and input line image is used to measure two dimensional distance by comparing the brightness on line CCDs. The algorithms are used the moving object sensing, path tracking and coordinate converting method. To ensure the effective detection of moving path, a detection algorithm to evaluate the reliability of each measured distance is developed. The realized system results are that the performance of moving object recognizing shows 5mm resolution, and enables to track a moving path of object per looms period.

Visual Query and Analysis Tool of the Moving Object Database System

  • Lee, J.H.;Lee, S.H.;Nam, K.W.;Park, J.H.
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.455-457
    • /
    • 2003
  • Diverse researches are working moving objects. The most important activities in a moving object database system are query and analysis of spatio -temporal data providing decision-making and problem solving support. Traditional spatial database query language and tools are inappropriate of the real world entities. This paper presents a spatio-temporal query and analysis tool with visual environment. It provides effective, interactive and user-friendly as well as statistic analysis. The moving objects database system stores plentiful moving objects data and performs spatio-temporal and nonspatio-temporal queries.

  • PDF

Motion Estimation of a Moving Object in Three-Dimensional Space using a Camera (카메라를 이용한 3차원 공간상의 이동 목표물의 거리정보기반 모션추정)

  • Chwa, Dongkyoung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.12
    • /
    • pp.2057-2060
    • /
    • 2016
  • Range-based motion estimation of a moving object by using a camera is proposed. Whereas the existing results constrain the motion of an object for the motion estimation of an object, the constraints on the motion is relieved in the proposed method in that a more generally moving object motion can be handled. To this end, a nonlinear observer is designed based on the relative dynamics between the object and camera so that the object velocity and the unknown camera velocity can be estimated. Stability analysis and simulation results for the moving object are provided to show the effectiveness of the proposed method.

Specified Object Tracking Problem in an Environment of Multiple Moving Objects

  • Park, Seung-Min;Park, Jun-Heong;Kim, Hyung-Bok;Sim, Kwee-Bo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.11 no.2
    • /
    • pp.118-123
    • /
    • 2011
  • Video based object tracking normally deals with non-stationary image streams that change over time. Robust and real time moving object tracking is considered to be a problematic issue in computer vision. Multiple object tracking has many practical applications in scene analysis for automated surveillance. In this paper, we introduce a specified object tracking based particle filter used in an environment of multiple moving objects. A differential image region based tracking method for the detection of multiple moving objects is used. In order to ensure accurate object detection in an unconstrained environment, a background image update method is used. In addition, there exist problems in tracking a particular object through a video sequence, which cannot rely only on image processing techniques. For this, a probabilistic framework is used. Our proposed particle filter has been proved to be robust in dealing with nonlinear and non-Gaussian problems. The particle filter provides a robust object tracking framework under ambiguity conditions and greatly improves the estimation accuracy for complicated tracking problems.

Decimation-in-time Search Direction Algorithm for Displacement Prediction of Moving Object (이동물체의 변위 예측을 위한 시간솎음 탐색 방향 알고리즘)

  • Lim Kang-mo;Lee Joo-shin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.2
    • /
    • pp.338-347
    • /
    • 2005
  • In this paper, a decimation-in-time search direction algorithm for displacement prediction of moving object is proposed. The initialization of the proposed algorithm for moving direction prediction is performed by detecting moving objects at sequential frames and by obtaining a moving angle and a moving distance. A moving direction of the moving object at current frame is obtained by applying the decimation-in-time search direction mask. The decimation-in-tine search direction mask is that the moving object is detected by thinning out frames among the sequential frames, and the moving direction of the moving object is predicted by the search mask which is decided by obtaining the moving angle of the moving object in the 8 directions. to examine the propriety of the proposed algorithm, velocities of a driving car are measured and tracked, and to evaluate the efficiency, the proposed algorithm is compared to the full search algorithm. The evaluated results show that the number of displacement search times is reduced up to 91.8$\%$ on the average in the proposed algorithm, and the processing time of the tracking is 32.1ms on the average.

Moving Object Segmentation using Space-oriented Object Boundary Linking and Background Registration (공간기반 객체 외곽선 연결과 배경 저장을 사용한 움직이는 객체 분할)

  • Lee Ho Suk
    • Journal of KIISE:Software and Applications
    • /
    • v.32 no.2
    • /
    • pp.128-139
    • /
    • 2005
  • Moving object boundary is very important for moving object segmentation. But the moving object boundary shows broken boundary We invent a novel space-oriented boundary linking algorithm to link the broken boundary The boundary linking algorithm forms a quadrant around the terminating pixel in the broken boundary and searches forward other terminating pixel to link within a radius. The boundary linking algorithm guarantees shortest distance linking. We also register the background from image sequence. We construct two object masks, one from the result of boundary linking and the other from the registered background, and use these two complementary object masks together for moving object segmentation. We also suppress the moving cast shadow using Roberts gradient operator. The major advantages of the proposed algorithms are more accurate moving object segmentation and the segmentation of the object which has holes in its region using these two object masks. We experiment the algorithms using the standard MPEG-4 test sequences and real video sequence. The proposed algorithms are very efficient and can process QCIF image more than 48 fps and CIF image more than 19 fps using a 2.0GHz Pentium-4 computer.

Range and Velocity Estimation of the Object using a Moving Camera (움직이는 카메라를 이용한 목표물의 거리 및 속도 추정)

  • Byun, Sang-Hoon;Chwa, Dongkyoung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.12
    • /
    • pp.1737-1743
    • /
    • 2013
  • This paper proposes the range and velocity of the object estimation method using a moving camera. Structure and motion (SaM) estimation is to estimate the Euclidean geometry of the object as well as the relative motion between the camera and object. Unlike the previous works, the proposed estimation method can relax the camera and object motion constraints. To this end, we arrange the dynamics of moving camera-moving object relative motion model in an appropriate form such that the nonlinear observer can be employed for the SaM estimation. Through both simulations and experiments we have confirmed the validity of the proposed estimation algorithm.

The Study of automatic region segmentation method for Non-rigid Object Tracking (Non-rigid Object의 추적을 위한 자동화 영역 추출에 관한 연구)

  • 김경수;정철곤;김중규
    • Proceedings of the IEEK Conference
    • /
    • 2001.06d
    • /
    • pp.183-186
    • /
    • 2001
  • This paper for the method that automatically extracts moving object of the video image is presented. In order to extract moving object, it is that velocity vectors correspond to each frame of the video image. Using the estimated velocity vector, the position of the object are determined. the value of the coordination of the object is initialized to the seed, and in the image plane, the moving object is automatically segmented by the region growing method and tracked by the range of intensity and information about Position. As the result of an application in sequential images, it is available to extract a moving object.

  • PDF

Implementation of Tracking and Capturing a Moving Object using a Mobile Robot

  • Kim Sang-joo;Park Jin-woo;Lee Jang-Myung
    • International Journal of Control, Automation, and Systems
    • /
    • v.3 no.3
    • /
    • pp.444-452
    • /
    • 2005
  • A new scheme for a mobile robot to track and capture a moving object using camera images is proposed. The moving object is assumed to be a point-object and is projected onto an image plane to form a geometrical constraint equation that provides the position data of the object based on the kinematics of the active camera. Uncertainties in position estimation caused by the point-object assumption are compensated for using the Kalman filter. To generate the shortest time path to capture the moving object, the linear and angular velocities are estimated and utilized. In this paper, the experimental results of the tracking and capturing of a target object with the mobile robot are presented.

Moving Object Detection Using Sparse Approximation and Sparse Coding Migration

  • Li, Shufang;Hu, Zhengping;Zhao, Mengyao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.5
    • /
    • pp.2141-2155
    • /
    • 2020
  • In order to meet the requirements of background change, illumination variation, moving shadow interference and high accuracy in object detection of moving camera, and strive for real-time and high efficiency, this paper presents an object detection algorithm based on sparse approximation recursion and sparse coding migration in subspace. First, low-rank sparse decomposition is used to reduce the dimension of the data. Combining with dictionary sparse representation, the computational model is established by the recursive formula of sparse approximation with the video sequences taken as subspace sets. And the moving object is calculated by the background difference method, which effectively reduces the computational complexity and running time. According to the idea of sparse coding migration, the above operations are carried out in the down-sampling space to further reduce the requirements of computational complexity and memory storage, and this will be adapt to multi-scale target objects and overcome the impact of large anomaly areas. Finally, experiments are carried out on VDAO datasets containing 59 sets of videos. The experimental results show that the algorithm can detect moving object effectively in the moving camera with uniform speed, not only in terms of low computational complexity but also in terms of low storage requirements, so that our proposed algorithm is suitable for detection systems with high real-time requirements.