• Title/Summary/Keyword: Moving Mesh Techniques

Search Result 20, Processing Time 0.025 seconds

Two-dimensional numerical simulation of volumetric gear pump flow (회전용적형 기어펌프 유동의 2차원 수치해석)

  • Lee, Jung-Ho;Park, Jong-Won;Kim, Tae-Goo;Lee, Sang-Wook
    • The KSFM Journal of Fluid Machinery
    • /
    • v.13 no.5
    • /
    • pp.17-21
    • /
    • 2010
  • A volumetric gear pump is often used in extensive industrial applications to provide both high pressure and sufficiently high flow rate by physical displacement of finite volume of fluid with each revolution. To better understand the unsteady flow characteristics within the pump, numerical simulations were conducted by using moving dynamic meshing (MDM) techniques in commercially available CFD software, FLUENT. The effects of rotor clearance size and rotational speed of rotor on the flow characteristics, specially the temporal variation of velocity and pressure field, which is a main source of flow noise, was investigated. The results showed that significant reverse flow is developed in the rotor clearance and that its size is one of the most important factors affecting flow characteristics and pressure pulsation.

A Terrain Rendering Method using Roughness Map and Bias Map (거칠기맵과 편향맵을 이용한 지형 렌더링 가법)

  • Lee, Eun-Seok;Jo, In-Woo;Shin, Byeong-Seok
    • Journal of the Korea Computer Graphics Society
    • /
    • v.17 no.2
    • /
    • pp.1-9
    • /
    • 2011
  • In recent researches, several LOD techniques are used for real-time visualization of large sized terrain data. However, during mesh simplification, geometry popping may occur in consecutive frames, because of the geometric error. We propose an efficient method for reducing the geometry popping using roughness map and bias map. A roughness map and a bias map are used to move vertices of the terrain mesh to appropriate position where they minimize the geometry errors. A roughness map and a bias map are represented as a texture suitable for GPU processing. Moving vertices using bias map is processed on the GPU, so the high-speed visualization can be possible.

Development of Analysis Technique for a High Voltage Circuit Breaker Using the CFD-CAD Integration (CFD-CAD 통합해석을 이용한 초고압 가스차단기 설계 기술 개발)

  • Lee, J.C.;Oh, I.S.;Min, K.S.;Kim, Y.J.
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.523-528
    • /
    • 2001
  • There are many difficult problems in analyzing the flow characteristics in a high voltage circuit breaker such as shock wave and complex geometries, which may be either static or in relative motion. Although a variety of mesh generation techniques are now available, the generation of meshes around complicated, multicomponent geometries like a gas circuit breaker is still a tedious and difficult task for the computational fluid dynamics. This paper presents the computational method for analyzing the compressible flow fields in a high voltage gas circuit breaker using the Cartesian cut-cell method based on the CFD-CAD integration, which can achieve the accurate representation of the geometry designed by a CAD tools. The technique is frequently satisfied, and it will be almost universally so in the future, as the CFD-CAD traffic increases.

  • PDF

ALE-Based FSI Simulation of Solid Propellant Rocket Interior (ALE 기반의 고체 로켓 내부 유체-구조 연계 해석)

  • Han, Sang-Ho;Choi, H.S.;Min, D.H.;Kim, C.;Hwang, Chan-Gyu
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.510-513
    • /
    • 2008
  • The traditional computational fluid or structure dynamics analysis approaches have contributed to solve many delicate engineering problems. But for the most of recent engineering problems which are influenced by fluid-structure interaction effect strongly, traditional individual approaches have limited analysis abilities for the exact simulation. Owing to above-mentioned reason, nowadays fluid-structure interaction analysis has become a matter of concern and interest. FSI analysis require several unprecedented techniques for the combining individual analysis tool into integrated analysis tool. The Arbitrary Lagrangian-Eulerian(ALE, in short) method is the new description of continum motion,which combines the advantages of the classical kinematical descriptions, i.e. Lagrangian and Eulerian description, while minimizing their respective drawbacks. In this paper, the ALE description is adapted to simulate fluid-structure interaction problems. An automatic re-mesh algorithm and a fluid-structure coupling process are included to analyze the interaction and moving motion during the 2-D axisymmetric solid rocket interior FSI phenomena simulation.

  • PDF

Development of a CFD Program for Cold Gas Flow Analysis in a High Voltage Circuit Breaker Using CFD-CAD Integration (CFD-CAD 통합해석을 이용한 초고압 차단기 내부의 냉가스 유동해석 프로그램 개발)

  • Lee, Jong-Cheol;An, Hui-Seop;O, Il-Seong;Choe, Jong-Ung
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.51 no.5
    • /
    • pp.242-248
    • /
    • 2002
  • It is important to develop new effective technologies to increase the interruption capacity and to reduce the size of a UB(Gas Circuit Breakers). Major design parameters such as nozzle geometries and interrupting chamber dimensions affect the cooling of the arc and the breaking performance. But it is not easy to test real GCB model in practice as in theory. Therefore, a simulation tool based on a computational fluid dynamics(CFD) algorithm has been developed to facilitate an optimization of the interrupter. Special attention has been paid to the supersonic flow phenomena between contacts and the observation of hat-gas flow for estimating the breaking performance. However, there are many difficult problems in calculating the flow characteristics in a GCB such as shock wave and complex geometries, which may be either static or in relative motion. Although a number of mesh generation techniques are now available, the generation of meshes around complicated, multi-component geometries like a GCB is still a tedious and difficult task for the computational fluid dynamics. This paper presents the CFD program using CFB-CAD integration technique based on Cartesian cut-cell method, which could reduce researcher's efforts to generate the mesh and achieve the accurate representation of the geometry designed by a CAD tools.

Use of Adaptive Meshes in Simulation of Combustion Phenomena

  • Yi, Sang-Chul;Koo, Sang-Man
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1996.06b
    • /
    • pp.285-309
    • /
    • 1996
  • Non oxide ceramics such as nitrides of transition metals have shown significant potential for future economic impact, in diverse applications in ceramic, aerospace and electronic industries, as refractory products, abrasives and cutting tools, aircraft components, and semi-conductor substrates amid others. Combustion synthesis has become an attractive alternative to the conventional furnace technology to produce these materials cheaply, faster and at a higher level of purity. However he process os highly exothermic and manifests complex dynamics due to its strongly non-linear nature. In order to develop an understanding of this process and to study the effect of operational parameters on the final outcome, numerical modeling is necessary, which would generated essential knowledge to help scale-up the process. the model is based on a system of parabolic-hyperbolic partial differential equations representing the heat, mass and momentum conservation relations. The model also takes into account structural change due to sintering and volumetric expansion, and their effect on the transport properties of the system. The solutions of these equations exhibit steep moving spatial gradients in the form of reaction fronts, propagating in space with variable velocity, which gives rise to varying time scales. To cope with the possibility of extremely abrupt changes in the values of the solution over very short distances, adaptive mesh techniques can be applied to resolve the high activity regions by ordering grid points in appropriate places. To avoid a control volume formulation of the solution of partial differential equations, a simple orthogonal, adaptive-mesh technique is employed. This involves separate adaptation in the x and y directions. Through simple analysis and numerical examples, the adaptive mesh is shown to give significant increase in accuracy in the computations.

  • PDF

Analysis of In-cylinder Flow in a Miller Cycle Engine with Variable IVC for HEV (밀러사이클 적용 HEV 엔진 실린더의 가변흡기밸브 닫힘각에 따른 실린더내 유동해석)

  • Kim, Sangmyeong;Sung, Gisu;Lee, Jinwook
    • Journal of ILASS-Korea
    • /
    • v.19 no.1
    • /
    • pp.25-32
    • /
    • 2014
  • For reduction of $CO_2$ emission emitted from combustion engine, the developed nations have been focused on R&D of hybrid electric vehicle. Further more, many automobile companies are researching on various techniques related to engine used in HEV to enhance fuel economy. One of key techniques is miller cycle that control a valve timing to reduce compression stroke for saving energy and increase expansion stroke for high power. In this study, it was investigated the in-cylinder flow characteristics of miller cycle with variable intake valve timing by using the ANSYS simulation code. For simulation, the key analytic parameter defined as intake valve closing timing and cam profile. As main results, it was shown that LIVC cause a lower pressure inside cylinder and had better control turbulence intensity.

Optimization of Duct System with a Cross Flow Fan to Improve the Performance of Ventilation (환기 성능 향상을 위한 횡류팬을 이용한 덕트 형상의 최적화)

  • Lee, Sang Hyuk;Kwo, Oh Joon;Hur, Nahmkeon
    • The KSFM Journal of Fluid Machinery
    • /
    • v.16 no.1
    • /
    • pp.40-46
    • /
    • 2013
  • Recently, the duct system with a cross flow fan was used to improve the ventilation in various industrial fields. For the efficient ventilation, it is necessary to design the duct system based on the flow characteristics around the cross flow fan. In the present study, the flow characteristics around a cross flow fan in the ventilation duct were predicted by using the moving mesh and sliding interface techniques for the rotation of blades. To design the duct system with the high performance of ventilation, the CFD simulations were repeated with the revised duct model based on the DOE. With the numerical results of flow rate through the ventilation duct with various geometric parameters, the optimized geometry of ventilation duct to maximize the flow rate was obtained by using the Kriging approximation method. From the performance curves of cross flow fan in the original and optimized models of ventilation duct, it was observed that the flow rate through the optimized model is about 16 percent larger than that through the original model.

Alphabetical Gesture Recognition using HMM (HMM을 이용한 알파벳 제스처 인식)

  • Yoon, Ho-Sub;Soh, Jung;Min, Byung-Woo
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 1998.10c
    • /
    • pp.384-386
    • /
    • 1998
  • The use of hand gesture provides an attractive alternative to cumbersome interface devices for human-computer interaction(HCI). Many methods hand gesture recognition using visual analysis have been proposed such as syntactical analysis, neural network(NN), Hidden Markov Model(HMM) and so on. In our research, a HMMs is proposed for alphabetical hand gesture recognition. In the preprocessing stage, the proposed approach consists of three different procedures for hand localization, hand tracking and gesture spotting. The hand location procedure detects the candidated regions on the basis of skin-color and motion in an image by using a color histogram matching and time-varying edge difference techniques. The hand tracking algorithm finds the centroid of a moving hand region, connect those centroids, and thus, produces a trajectory. The spotting a feature database, the proposed approach use the mesh feature code for codebook of HMM. In our experiments, 1300 alphabetical and 1300 untrained gestures are used for training and testing, respectively. Those experimental results demonstrate that the proposed approach yields a higher and satisfying recognition rate for the images with different sizes, shapes and skew angles.

  • PDF

Thermal Decomposition and Ablation Analysis of Solid Rocket Propulsion (삭마 및 열분해 반응을 고려한 고체 추진기관의 열해석)

  • Kim, Yun-Chul
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.14 no.5
    • /
    • pp.32-44
    • /
    • 2010
  • A two-dimensional thermal response and ablation analysis code for predicting charring material ablation and shape change on solid rocket nozzle is presented. The thermogravimetric analysis (TGA) techniques have been used to characterize the thermal decomposition constants for Arrhenius parameters. Two heterogeneous reactions involving carbon and the oxidizing species of $H_2O$ and $CO_2$ are considered and determined by Zvyagin's ablation model and kinetic constants. The moving boundary problem and mesh moving are solved by remeshing-rezoning method in MSC-Marc-ATAS program. The difference between the calculated and experimental value of char and ablation thickness is up to 20%. For the performance prediction of thermal protection systems, this method will be integrated with a three-dimensional finite-element thermal and structure analysis code through the real time sensing of in-depth temperature and heat flux.