• 제목/요약/키워드: Moving Mesh Techniques

검색결과 20건 처리시간 0.02초

격자 변형 기법을 사용한 운동하는 2차원 실린더 주위의 유동 해석 (ANALYSIS OF TWO-DIMENSIONAL FLOW AROUND AN OSCILLATING CYLINDER USING MOVING MESH TECHNIQUES)

  • 이희범;이신형
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2010년 춘계학술대회논문집
    • /
    • pp.542-547
    • /
    • 2010
  • Recently, thanks to advanced computational power and numerical techniques, it is made possible to analyze the flow around moving bodies using computational fluid dynamics techniques. In those simulations, moving mesh techniques should be able to represent both the body motion and boundary deformation which are frequently encounterd in fluid-structure interaction and/of six degree-of-freedom problems. There are several moving mesh techniques such as the Laplacian operator based, tension spring based and elastic deformation based methods. In the present study, the Laplacian operator based method was utilized and the results were validated. For the validation, the flow around an oscillating two-dimensional cylinder was simulated and analyzed.

  • PDF

격자변환기법을 이용한 이동물체 주위의 유동해석 (A Numerical Analysis on Flows Around a Moving Body Using a Mesh Transformation Method)

  • 김태균;허남건
    • 대한기계학회논문집B
    • /
    • 제25권4호
    • /
    • pp.593-599
    • /
    • 2001
  • A flow analysis is performed in the present study for the moving body problem by proposing a mesh transformation method for the movement of the body in the fluid medium. Unlike other moving mesh techniques, a mesh itself is not moving but changes its property as time marches in a mesh transformation method. The flow field results are compared with those by other moving mesh technique, and showed good agreements. The movement of a floatable body in the flow field caused by the moving body is also studied in the present study by using a mesh transformation technique and a fluid/structure interaction method.

유체-구조 연성 기법을 사용한 움직이는 2차원 실린더 주위의 유동 해석 (Fluid-structure interaction analysis of two-dimensional flow around a moving cylinder)

  • 이희범;이신형
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2011년 춘계학술대회논문집
    • /
    • pp.68-74
    • /
    • 2011
  • Recently, thanks to the advanced computational power and numerical methods, it is made possible to analyze the flow around moving bodies using computational fluid dynamics techniques. In those simulations, moving mesh techniques should be able to represent both the body motion and boundary deformation, which are frequently encountered in fluid-structure interaction and/or six degree-of-freedom problems. In the present study, the staggered loosely coupling algorithm was used for fluid-structure interaction and the Laplacian operator based technique was used for moving mesh. For the verification of the developed computational method, the flow around a two-dimensional cylinder was simulated and analyzed.

  • PDF

동영상에서의 내용기반 메쉬를 이용한 모션 예측 (Content Based Mesh Motion Estimation in Moving Pictures)

  • 김형진;이동규;이두수
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2000년도 하계종합학술대회 논문집(4)
    • /
    • pp.35-38
    • /
    • 2000
  • The method of Content-based Triangular Mesh Image representation in moving pictures makes better performance in prediction error ratio and visual efficiency than that of classical block matching. Specially if background and objects can be separated from image, the objects are designed by Irregular mesh. In this case this irregular mesh design has an advantage of increasing video coding efficiency. This paper presents the techniques of mesh generation, motion estimation using these mesh, uses image warping transform such as Affine transform for image reconstruction, and evaluates the content based mesh design through computer simulation.

  • PDF

최적화 방법을 이용한 Delaunay 격자의 내부 격자밀도 적응 방법 (Delaunay mesh generation technique adaptive to the mesh Density using the optimization technique)

  • 홍진태;이석렬;박철현;양동열
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2004년도 추계학술대회논문집
    • /
    • pp.75-78
    • /
    • 2004
  • A mesh generation algorithm adapted to the mesh density map using the Delaunay mesh generation technique is developed. In the finite element analyses of the forging processes, the numerical error increases as the process goes on because of discrete property of the finite elements or severe distortion of elements. Especially, in the region where stresses and strains are concentrated, the numerical discretization error will be highly increased. However, it is too time consuming to use a uniformly fine mesh in the whole domain to reduce the expected numerical error. Therefore, it is necessary to construct locally refined mesh at the region where the error is concentrated such as at the die corner. In this study, the point insertion algorithm is used and the mesh size is controlled by moving nodes to optimized positions according to a mesh density map constructed with a posteriori error estimation. An optimization technique is adopted to obtain a good position of nodes. And optimized smoothing techniques are also adopted to have smooth distribution of the mesh and improve the mesh element quality.

  • PDF

소결 메쉬를 이용한 원통형 수중운동체 항력 감소 연구 (A Study on Drag Reduction of Cylindrical Underwater Body Using Sintered Mesh)

  • 정철민;백부근;김경열;정영래
    • 한국군사과학기술학회지
    • /
    • 제21권2호
    • /
    • pp.195-203
    • /
    • 2018
  • Among the techniques of reducing the drag to increase the speed of underwater moving bodies, we studied on the drag reduction method by gas injection. Researches on gas injection method have been paid much attention to reduce the drag of vessels or pipe inner walls. In this study, we used a sintered metal mesh that can uniformly distribute fine bubbles by gas injection method, and applied it to a cylindrical underwater moving body. Using the KRISO medium-sized cavitation tunnel, we measured both the bubble size on the surface of the sintered mesh and the bubble distribution in the boundary layer. Then, drag reduction tests were performed on the cylinder type underwater moving models with cylindrical or round type tail shape. Experiments were carried out based on the presence or absence of tail jet injection. In the experiments, we changed the gas injection amount using the sintered mesh gas injector, and changed flow rate accordingly. As a result of the test, we observed increased bubbles around the body and confirmed the drag reduction as air injection flow rate increased.

안팎 형상이 비대칭인 쌍동선의 자항성능 CFD 해석에 관한 연구 (A Study on the Self-Propulsion CFD Analysis for a Catamaran with Asymmetrical Inside and Outside Hull Form)

  • 이종현;박동우
    • 해양환경안전학회지
    • /
    • 제30권1호
    • /
    • pp.108-117
    • /
    • 2024
  • 본 연구에서는 너클 라인이 다수 존재하면서 안팎 형상이 비대칭으로 설계된 특이점을 갖는 쌍동선의 자항성능을 예측하기 위해 CFD 해석을 수행하였고, 해석 기법에 따른 차이를 파악하기 위해 MRF(Moving Reference Frame) 기법과 SDM(Sliding Mesh) 기법을 적용하였다. MRF 기법을 적용한 경우에는 time step당 프로펠러를 1˚ 회전시켰고, SDM 기법의 경우 10˚, 5˚, 1˚씩 회전시키며 각 기법별 예측된 자항성능을 비교하였다. 자항점 추정을 위한 몇 가지 프로펠러 회전수에서의 해석 결과 중 프로펠러의 토크는 기법에 따른 차이가 거의 없었지만 추력 및 선체가 받는 저항은 MRF 기법보다는 SDM 기법을 적용했을 때 더 낮게, SDM 기법의 time step당 프로펠러 회전각이 작을수록 높게 계산되었다. 선형 내삽을 통해 추정된 자항점의 프로펠러 회전수, 추력, 토크와 실선 확장법을 사용해 추정된 실선의 전달동력, 반류 계수, 추력 감소 계수 및 프로펠러 회전수도 동일한 경향을 보였으며, 대부분의 자항효율은 반대의 경향을 보였다. 프로펠러 후류의 경우 MRF 기법을 적용했을 때 정확도가 떨어졌고, SDM 기법의 time step당 프로펠러 회전각에 따라 표현되는 후류의 차이는 거의 없었다.

가변 추력용 핀틀 노즐의 동적 특성에 관한 수치적 연구 (Numerical Study on Dynamic Characteristics of Pintle Nozzle for Variant Thrust)

  • 박형주;김리나;허준영;성홍계;양준서
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2011년도 제37회 추계학술대회논문집
    • /
    • pp.213-217
    • /
    • 2011
  • 고체 로켓 모터의 추력 제어를 위한 핀틀 노즐에 대한 비정상 수치해석을 수행하였다. 비정상 수치해석 기법을 이용하여 핀틀의 위치 변화를 고려하였으며, 다양한 핀틀 형상의 동적 특성에 대한 연구를 수행하였다. 시간에 따른 핀틀의 위치 변화를 고려하기 위해 이동격자기법을 적용하였다. 다양한 형상의 핀틀에 대하여 핀틀의 이동에 따른 노즐 목의 위치 및 크기를 예측하였고, 수치해석 결과와 비교하였다. 그리고 엔진성능의 동특성을 관찰하기 위하여 비정상 수치해석을 통해 연소실 압력, 추력 등을 분석하였다.

  • PDF

Performance analysis of Savonius Rotor for Wave Energy Conversion using CFD

  • ;최영도;김규한;이영호
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 추계학술대회 논문집
    • /
    • pp.600-605
    • /
    • 2009
  • A general purpose viscous flow solver Ansys CFX is used to study a Savonius type wave energy converter in a 3D numerical viscous wave tank. This paper presents the results of a computational fluid dynamics (CFD) analysis of the effect of blade configuration on the performance of 3 bladed Savonius rotors for wave energy extraction. A piston-type wave generator was incorporated in the computational domain to generate the desired incident waves. A complete OWC system with a 3-bladed Savonius rotor was modeled in a three dimensional numerical wave tank and the hydrodynamic conversion efficiency was estimated. The flow over the rotors is assumed to be two-dimensional (2D), viscous, turbulent and unsteady. The CFX code is used with a solver of the coupled conservation equations of mass, momentum and energy, with an implicit time scheme and with the adoption of the hexahedral mesh and the moving mesh techniques in areas of moving surfaces. Turbulence is modeled with the k.e model. Simulations were carried out simultaneously for the rotor angle and the helical twist. The results indicate that the developed models are suitable to analyze the water flows both in the chamber and in the turbine. For the turbine, the numerical results of torque were compared for all the cases.

  • PDF

변형을 고려한 요트 세일의 2차원 단면 해석 (Analysis of a Two-Dimensional Section of Deforming Yacht Sails)

  • 이희범;이신형;유재훈
    • 대한조선학회논문집
    • /
    • 제48권4호
    • /
    • pp.308-316
    • /
    • 2011
  • Although a yacht sails operate with large displacement due to very thin thickness, many studies for flow around yacht sails have not considered the sail deformation. The sail deformation not only caused a change in the center of effect(CE) on the sail but also a change in the thrust of the sail. The change of the CE and thrust affects the center of lateral resistance(CLR) and side forces of the hull, and the balance of the yacht. These changes affect the motion of the yacht which changes the velocity of the yacht. Thus, when analyzing the flow around yacht sails, the sail deformation should be considered. In the present study, fluid-structure-interaction(FSI) analysis of a two dimensional section of yacht sails was performed to consider the effects of sail deformation on the lift and drag performance. FSI and moving mesh methods were studied. Computational methods were verified using benchmark test cases such as the flow around horizontal and vertical cantilever beams. Shape deformation, pressure distribution, lift forces and separation flow were compared for both rigid and deformable sail.