• Title/Summary/Keyword: Moving Joint

Search Result 241, Processing Time 0.022 seconds

Experience of Obstetrics and Neonatal Nurses Who Provided Nursing Care during Pregnancy and Childbirth of Unmarried Mothers (미혼모의 임신과 출산 과정에서 간호를 제공한 산과와 신생아 파트 간호사의 경험)

  • Jo, Myoung-Ju;Do, Ji-Young
    • Journal of muscle and joint health
    • /
    • v.30 no.3
    • /
    • pp.168-178
    • /
    • 2023
  • Purpose: This study explored obstetric and neonatal nurses' nursing experience of pregnancy and childbirth in unmarried mothers. Methods: In-depth interviews were conducted with 12 nurses working in obstetrics, gynecology, and neonatal departments in Seoul and Busan. The collected data were examined using qualitative content analysis. Results: A total of four categories and ten themes were derived. The four categories were "Feelings toward unmarried mothers," "Difficulties faced when caring for unmarried mothers", "Nursing moving forward together", and "Strategies to improve care for unmarried mothers". Conclusion: To ensure that nurses can provide sufficient positive support and care when caring for unmarried mothers, healthcare workers must be provided with adequate education to improve their awareness and the services for unmarried mothers; in addition, interventions are needed to alleviate negative experiences and emotions when dealing with unmarried mothers.

Joint Localization and Velocity Estimation for Pulse Radar in the Near-field Environments

  • Nakyung Lee;Hyunwoo Park;Daesung Park;Bukeun Byeon;Sunwoo Kim
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.12 no.3
    • /
    • pp.315-321
    • /
    • 2023
  • In this paper, we propose an algorithm that jointly estimates the location and velocity of a near-field moving target in a pulse radar system. The proposed algorithm estimates the location and velocity corresponding to the outcome of orthogonal matching pursuit (OMP) in a 4-dimensional (4D) location-velocity space. To address the high computational complexity of 4D parameter joint estimation, we propose an algorithm that iteratively estimates the target's 2D location and velocity sequentially. Through simulations, we analyze the estimation performance and verify the computational efficiency of the proposed algorithm.

Position Control of the Two Links Inverted Pendulum with a Time Varying Load on the Top (상부 시변 부하를 갖는 2축 도립진자의 위치 제어)

  • 이건영
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.9
    • /
    • pp.1147-1153
    • /
    • 1999
  • The attitude control of a double inverted pendulum with a periodical disturbance at link top is dealt in this paper. The proposed system is consisted of the double inverted pendulum and a disturbing link; a triple inverted pendulum with two motors. The lower link is hinged on the plate to free for rotation in the vertical plane. The upper link is connected to the lower link through a DC motor. The DC motor is used to control the posture of the pendulum by adjusting the position of the upper link. The periodical disturbance can be generated by the additional like attached at the end of link 2 through another DC motor, which is the modeling of a posture for a biped supporting with one leg. The motor for the joint simulates the knee joint(or hip joint) and the disturbance for the legs moving in air. The algorithm for controlling the proposed inverted pendulum which is regarded as a virtual double inverted pendulum with a periodic disturbance, is consisted of a state feedback control and a fuzzy logic controller connected in parallel. The fuzzy controller keeps the center of gravity of the biped within the specified range through the nonlinear feedback compensator. The state feedback control takes over the role to maintain a desired posture regardless the disturbance at the link top. Simulations with a mathematical model and experiments are conducted to show the validity of the proposed controller.

  • PDF

The Attitude Control of The Double Inverted Pendulum with Periodic Upper Disturbance (주기적인 상부 외란이 인가되는 2축 도립 진자의 자세 제어)

  • Nam, Row-Hyun;Yi, Keon-Young
    • Proceedings of the KIEE Conference
    • /
    • 1998.07g
    • /
    • pp.2309-2311
    • /
    • 1998
  • The attitude control of a double inverted pendulum with a periodical disturbance at link top is dealt in this paper. The proposed system is consisted of the double inverted pendulum and a disturbance link. The lower link is hinged on the plate to free for rotation in the vertical plane. The upper link is connected to the lower link through a DC motor. The DC motor is used to control the posture of the pendulum by adjusting the position of the upper link. The periodical disturbance can be generated by the additional link attached at the end of link 2 through another DC motor, which is the modeling of a posture for a biped supporting with one leg. The motor for the joint simulates the knee joint(or hip joint) and the disturbance for the legs moving in air. The algorithm for controlling a proposed inverted pendulum is consisted of a state feedback control and a fuzzy logic controller. The fuzzy controller keeps the center of gravity of the biped within the specified range through the nonlinear feedback compensator. The state feedback control takes over the role to maintain a desired posture regardless the disturbance at the link top. In these case, the change of the angle and COG of an upper link is compensated with on-line. Simulations with a mathematical model are conducted to show the validity of the proposed controller.

  • PDF

A Study on the Path Constraint Error Reducing Trajectory Planning (Path Constraint한 궤적 계획법의 위치 오차 감소에 관한 연구)

  • Hwang, Seung-Jae;Park, Se-Woong;Kim, Dong-Jun;Kim, Kab-Il;Kim, Dae-Won
    • Proceedings of the KIEE Conference
    • /
    • 1995.07b
    • /
    • pp.843-845
    • /
    • 1995
  • There are a variety of trajectory and control algorithms available for robot trajectory tracking. Before using the enhanced trajectory and control algorithms to reduce the tracking error, we introduce the new method which reduces the tracking error by clipping the joint velocity. A lot of robot trajectory tracking methods are proposed to enhance the robot tracking, but irregular tracking errors are always accompanied. Up to now, these irregular tracking errors are gradually but uniformly reduced by introducing more complicated control algorithms. It is intuitively obvious to reduce only the big errors selectively in the irregular ones for the better performance. By heuristic method, big tracking errors in these irregular ones are assumed mostly due to the fast moving of joint with respect to the same tracking and control method. So, in this paper, we introduce a new method which reduce the big tracking errors by clippings the joint velocity with the constraint of given path. Using this method, desired trajectory tracking is obtained within the far reduced error bound. Also, this method is successfully applied to generate the path-constrained error reducing trajectories for 2-axis SCARA type robot.

  • PDF

Fault-Tolerant Tripod Gaits Considering Deadlock Avoidance (교착 회피를 고려한 내고장성 세다리 걸음새)

  • 노지명;양정민
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.8
    • /
    • pp.585-593
    • /
    • 2004
  • Fault-tolerant gait planning in legged locomotion is to design gaits with which legged robots can maintain static stability and motion continuity against a failure in a leg. For planning a robust and deadlock-free fault-tolerant gait, kinematic constraints caused by a failed leg should be closely examined with respect to remaining mobility of the leg. In this paper, based on the authors's previous results, deadlock avoidance scheme for fault-tolerant gait planning is proposed for a hexapod robot walking over even terrain. The considered fault is a locked joint failure, which prevents a joint of a leg from moving and makes it locked in a known position. It is shown that for guaranteeing the existence of the previously proposed fault-tolerant tripod gait of a hexapod robot, the configuration of the failed leg must be within a range of kinematic constraints. Then, for coping with failure situations where the existence condition is not satisfied, the previous fault-tolerant tripod gait is improved by including the adjustment of the foot trajectory. The foot trajectory adjustment procedure is analytically derived to show that it can help the fault-tolerant gait avoid deadlock resulting from the kinematic constraint and does not make any harmful effect on gait mobility. The post-failure walking problem of a hexapod robot with the normal tripod gait is addressed as a case study to show the effectiveness of the proposed scheme.

Temporomandibular joint ankylosis suspected to be associated with ankylosing spondylitis based on cervical computed tomography images: A pictorial essay

  • Ikuho Kojima;Shinnosuke Nogami;Shin Hitachi;Yusuke Shimada;Yushi Ezoe;Yuka Yokoyama-Sato;Masahiro Iikubo
    • Imaging Science in Dentistry
    • /
    • v.54 no.2
    • /
    • pp.201-206
    • /
    • 2024
  • This report showed a case of temporomandibular joint (TMJ) ankylosis suspected to be associated with ankylosing spondylitis based on the observation of bony ankylosis of the cervical spine on computed tomography (CT) images. A 53-year-old man presented with a chief complaint of difficulty in opening his mouth. His medical history indicated that in his 20 s, he became aware of the difficulty in moving his neck. CT revealed marked osteoarthritic changes in the right mandibular condyle, suggesting fibrotic TMJ ankylosis. In addition, bony ankylosis of the cervical vertebral body and facet joints from the axis (C2) to C5 in continuity was observed. CT of the entire spine also showed bony deformity of the sacroiliac joints and bony ankylosis. Based on these findings, ankylosing spondylitis was suspected. The possibility of an ankylosing spondylitis complication should be considered in cases of TMJ ankylosis if bony ankylosis of the cervical spine is observed.

Reduced Order Model and Decoupled Control of TWO Cooperating Manipulators for Moving an Object (단일물체 이동작업을 위한 두 협동 매니퓰레이터의 감소차수 모델과 감결합 제어)

  • Kang, Seok-Won;Jeong, Kwang-Son;Park, Chong-Kug
    • Proceedings of the KIEE Conference
    • /
    • 1991.07a
    • /
    • pp.805-808
    • /
    • 1991
  • In this paper, dynamical model and control architecture are developed for the closed chain motion of two N-joint manipulators holding a rigid object. Controller consist of forward controller which is reduced order model and compensator that compensates for modeling error. Control laws are determined so as to decouple the force and position controlled degree of freedom(DOF) during motion of the system.

  • PDF

The Examination of Reliability of Lower Limb Joint Angles with Free Software ImageJ

  • Kim, Heung Youl
    • Journal of the Ergonomics Society of Korea
    • /
    • v.34 no.6
    • /
    • pp.583-595
    • /
    • 2015
  • Objective: The purpose of this study was to determine the reliability of lower limb joint angles computed with the software ImageJ during jumping movements. Background: Kinematics is the study of bodies in motion without regard to the forces or torques that may produce the motion. The most common method for collecting motion data uses an imaging and motion-caption system to record the 2D or 3D coordinates of markers attached to a moving object, followed by manual or automatic digitizing software. Above all, passive optical motion capture systems (e.g. Vicon system) have been regarded as the gold standards for collecting motion data. On the other hand, ImageJ is used widely for an image analysis as free software, and can collect the 2D coordinates of markers. Although much research has been carried out into the utilizations of the ImageJ software, little is known about their reliability. Method: Seven healthy female students participated as the subject in this study. Seventeen reflective markers were attached on the right and left lower limbs to measure two and three-dimensional joint angular motions. Jump performance was recorded by ten-vicon camera systems (250Hz) and one digital video camera (240Hz). The joint angles of the ankle and knee joints were calculated using 2D (ImageJ) and 3D (Vicon-MX) motion data, respectively. Results: Pearson's correlation coefficients between the two methods were calculated, and significance tests were conducted (${\alpha}=1%$). Correlation coefficients between the two were over 0.98. In Vicon-MX and ImageJ, there is no systematic error by examination of the validity using the Bland-Altman method, and all data are in the 95% limits of agreement. Conclusion: In this study, correlation coefficients are generally high, and the regression line is near the identical line. Therefore, it is considered that motion analysis using ImageJ is a useful tool for evaluation of human movements in various research areas. Application: This result can be utilized as a practical tool to analyze human performance in various fields.

A Statistical Analysis of Joint Moments Acting on Men Performing a Seated Dynamic Task (앉은 자세에서 동적 작업을 수행할 때 작용하는 관절 모멘트의 통계학적 해석)

  • Jung, Ho-Il;Son, Kwon
    • Progress in Medical Physics
    • /
    • v.2 no.2
    • /
    • pp.161-173
    • /
    • 1991
  • A statistical approach was carried out to analyze joint moments acting on the six subjects performing a right-handed seated task. The dynamic task analyzed consisted of moving a hand-held weight of lkg mass back and forth in front of a subject's chest at the shoulder level in an upright seated position. We used experimental data obtained in the Biomechanics Laboratory of the University of Michigan. Based on the acquired data from three trials by each subject, moments were calculated using a 3-dimensional biomechanical model at such articulations as wrist, elbow, shoulder, the third lumbar spine, hip, knee, and ankle joints. The linear correlation and the two way analysis of variance were applied to the calculated joint moments in order to investigate inter-subject and inter-trial varations. The results obtained showed that the largest magnitude and deviation of moment was found at the third lumbar spine, that any linear relationship could not be found between moment and its equivalents attempted in this study, and that the maximum value and deviation of moment acting on each joint were statistically the same for all three trials but those were statistically not the same for all six subjects.

  • PDF