• Title/Summary/Keyword: Moving Body

Search Result 624, Processing Time 0.031 seconds

Jeogori Pattern Development for Female in Late 20s According to Shape of Upper Back (20대 후반 여성의 상반신 뒷면 형상에 따른 저고리 원형 개발)

  • Eom, Ran-I;Lee, Yejin
    • Korean Journal of Human Ecology
    • /
    • v.23 no.6
    • /
    • pp.1191-1204
    • /
    • 2014
  • Even though a Han-bok, or traditional Korean costume, should be inherited since it is invaluable part of our culture, research on Han-bok is scarce. Since the development of a Jeogori pattern, the upper garment of Korean traditional clothes, is done mostly based on the chest size, the design does not completely consider on wearer's body shape. Moreover, unless made by an expert, trial and error is almost always necessary to improve the fit of the clothes. In this research, a Jeogori pattern was suggested that improves the fit based on the shape of the upper back(straight or bent) of a female in her late 20s who often wears a Han-bok and is comfortable when moving. Using a 3D virtual clothing system, the optimum pattern was selected based on the body shape. The final selection was made, and each subjects tried the garment on to evaluate the comfort when moving, along with its appearance, based on a seven point Likert scale. As a result, for a straight body shape, the optimum ease for the front bust width was 2.5cm, and that for the back bust width was 2.0cm. The optimum center back dart was 1.0cm. The optimum Geodae width was 7.6cm, and the optimum back Geodae point was 2.0cm. For the bent body shape, the optimum ease for the front and back bust was 2.0cm. The optimum Geodae width was 8.4cm, and the optimum back Geodae point was 1.5cm. Furthermore, if the Hwajang slope was set at half of the vertical distance between the laterals of the neck and shoulder, a fitted silhouette appeared, which is preferred nowadays. In the appearance evaluation, the final pattern designed in this research received higher scores than the original design(straight; p<.001, bent; p<.05). The results of the evaluation of the comfort when moving also showed higher scores for the final pattern that was designed.

Large Eddy Simulations on the Configuration Design of Afterbodies for Drag Reduction (저항감소를 위한 물체후방의 형상설계에 관한 LES 해석)

  • PARK JONC-CHUN;KANG DAE-HWAN;CHUN HO-HWAN
    • Journal of Ocean Engineering and Technology
    • /
    • v.17 no.5 s.54
    • /
    • pp.1-10
    • /
    • 2003
  • When a body with slant angle behind its shoulder is moving at a high speed, the turbulent motion around the afterbody is generally associated with the flow separation, and determines the normal component of the drag. By changing the slant angle of the afterbody, the drag coefficients can be changed, drastically. Understanding and controlling the turbulent separated flows has significant importance for the design of optimal configuration of the moving bodies. In this paper, a new Large Eddy Simulation technique has been developed to investigate turbulent vortical motions around the afterbodies, using slant angle. By understanding the structure of the turbulent flow around the body, the new configuration of afterbodies is designed to reduce the drag of body, and the nonlinear effects, due to the interaction between the body configuration and the turbulent separated flows, are investigated by use of the developed LES technique.

A Study on the Quality Deviation of Passenger Cars using the Robust Design (강건 설계 기법을 이용한 승용차의 품질 산포에 관한 연구)

  • Kim, Ki-Chang;Kim, Chan-Mook
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.110-113
    • /
    • 2006
  • This paper describes the development process of body and full vehicle for reduced idle vibration through the data level of frequency and sensitivity. The vibration mode map is used to separate body structure modes from resonance of engine idle nm and steering system. This paper describes the analysis approach process to reduce the variation of uncertainties for idle vibration performance at initial design stage. The robust design method is performed to increase the stabilization performance under vehicle vibration. It is used to predict the effects of the stiffness deviation according to the spot welding condition of the body structure. The tolerance associated with hood over slam bumper is analyzed for the quality deviation of the moving system in full vehicle. And the glass sealant stiffness and weight difference is considered for the deviation characteristic. The design guideline is suggested considering sensitivity about body and full vehicle by using mother car at initial design stage. It makes possible to design the good NVH performance and save vehicles to be used in tests. These improvements can lead to shortening the time needed to develop better vehicles.

  • PDF

Zigzag Gait Planning of n Quadruped Walking Robot Using Geometric Search Method (기하학적 탐색을 이용한 4각 보행로봇의 지그재그 걸음새 계획)

  • Park, Se-Hoon;Lee, Seung-Ha;Lee, Yun-Jung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.2
    • /
    • pp.142-150
    • /
    • 2002
  • This paper presents a systematic method of the zigzag gait planning for quadruped walking robots. When a robot walks with a zigzag gait, its body is allowed to move from side to side, while the body movement is restricted along a moving direction in conventional continuous gaits. The zigzag movement of the body is effective to improve the gait stability margin. To plan a zigzag gait in a systematic way, the relationship between the center of gravity(COG) and the stability margin is firstly investigated. Then, new geometrical method is introduced to plan a sequence of the body movement which guarantees a maximum stability margin as well as monotonicity along a moving direction. Finally, an optimal swing-leg sequence is chosen for a given arbitrary configuration of the robot. To verify the proposed method, computer simulations have been performed for both cases of a periodic gait and a non-periodic gait.

Large Eddy Simulations on the Configuration Design of Afterbodies for Drag Reduction (저항감소를 위한 물체후방의 형상설계에 관한 LES 해석)

  • Park, Jong-Chun;Kang, Dae-Hwan;Chun, Ho-Hwan
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.49-55
    • /
    • 2003
  • When a body with slant angle after its shoulder is moving at high speed, the turbulent motion around the afterbody is generally associated with the flaw separation and determines the normal component of the drag. By changing the slant angle of afterbody, there exists a critical angle at which the drag coefficients change drastically. Understanding and control of the turbulent separated flows are of significant importance for the design of optimal configuration of the moving bodies. In the present paper, a new Large Eddy Simulation technique has been developed to investigate turbulent vortical motions around the afterbodies with slant angle. By basis of understanding the structure of turbulent flaw around the body, the new configuration of afterbodies are designed to reduce the drag of body and the nonlinear effects due to the interaction between the body configuration and the turbulent separated flows are investigated by use of the developed LES technique.

  • PDF

IMMERSED BOUNDARY METHOD FOR COMPRESSIBLE VISCOUS FLOW AROUND MOVING BODIES (이동하는 물체 주위의 압축성 유동에 대한 가상경계법)

  • Cho, Yong;Chopra, Jogesh;Morris, Philip J.
    • Journal of computational fluids engineering
    • /
    • v.13 no.3
    • /
    • pp.35-43
    • /
    • 2008
  • A methodology for the simulation of compressible high Reynolds number flow over rigid and moving bodies on a structured Cartesian grid is described in this paper. The approach is based on a modified version of the Brinkman Penalization method. To avoid oscillations in the vicinity of the body and to simulate shcok-containing flows, a Weighted Essentially Non-Oscillatory scheme is used to discretize the spatial flux derivatives. For high Reynolds number viscous flow, two turbulence models of the two-equation Menter's SST URANS model and a two-equation Detached Eddy Simulation are implemented. Some simple flow examples are given to assess the accuracy of the technique. Finally, a moving grid capability is demonstrated.

Development of High Speed & Precision Mould/Die Machining Center (고속.고정밀 금형가공센터 개발)

  • 최원선;김태형;이재윤
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.87-94
    • /
    • 2002
  • In order to manufacture a precision mold/die by machining, users need high speed & precision mold/die machining center. So, for development of this machine, we intend to use linear motor that is instead of ball-screw, servo-motor and coupling, high-speed spindle of pressurized air journal bearing and composite materials. In this paper we research column moving type and table moving type. The former is mainly piling 3 axes on one moving body, the latter is consist of two independent carriages. Both types are available to high speed & precision machine, but we finally draw a conclusion column moving type due to an advantage of high-speed control of linear motor.

  • PDF

A Study on the recognition of moving objects by segmenting 2D Laser Scanner points (2D Laser Scanner 포인트의 자동 분리를 통한 이동체의 구분에 관한 연구)

  • Lee Sang-Yeop;Han Soo-Hee;Yu Ki-Yun
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2006.04a
    • /
    • pp.177-180
    • /
    • 2006
  • In this paper we proposed a method of automatic point segmentation acquired by 2D laser scanner to recognize moving objects. Recently, Laser scanner is noticed as a new method in the field of close range 3D modeling. But the majority of the researches are pointed on precise 3D modeling of static objects using expensive 3D laser scanner. 2D laser scanner is relatively cheap and can obtain 2D coordinate information of moving object's surface or can be utilized as 3D laser scanner by rotating the system body. In these reasons, some researches are in progress, which are adopting 2D laser scanner to robot control systems or detection of objects moving along linear trajectory. In our study, we automatically segmented point data of 2D laser scanner thus we could recognize each of the object passing through a section.

  • PDF

Torsional Vibration of a Hollow Shaft Subjected to a Moving Mass (이동질량에 의한 중공축의 비틀림 진동해석)

  • Park, Yong-Suk;Hong, Sung-Chul
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.8 s.101
    • /
    • pp.975-979
    • /
    • 2005
  • The analysis of a mechanical system, body traveling along the elastic structure, has been a topic of interest. The establishment of analytical method for the development and control of this system is required in the fields of many machine operations such as modern weapons and high-speed feed drive system for a machine tool. The dynamic equations are derived on the torsion of a cantilever hollow shaft induced by the spin-up of a moving mass and the displacement of the mass. Influences of design parameters such as the inertia ratio, the mass moving speed and the friction coefficient are discussed on the transient response of the system.