• Title/Summary/Keyword: Moving Average of precipitation

Search Result 44, Processing Time 0.026 seconds

Spatio-Temporal Variability Analysis of Precipitation Data Through Circular Statistics (순환통계 분석을 통한 강수량 시계열의 시공간적 변동성 분석)

  • Kwon, Hyun-Han;Lee, Jeong-Ju
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.2B
    • /
    • pp.191-198
    • /
    • 2010
  • Assessing seasonality of precipitation is necessarily required to establish future plans and policies for water resources management. In this regard, a main objective of the study is to introduce an effective approach for assessing the seasonality of the precipitation and evaluate the seasonality through the proposed one. We have used circular statistics to characterize the seasonality on the precipitation in Korea. The circular statistics allow us to effectively assess changes in timing of the seasonality in detail. It was found that peak time on monthly rainfall occurred between end of June and early July in southern coastal area while the timing was delayed in northern part of Korea because of monsoon moving in from south to north. In case of annual daily peak precipitation, spatio-temporal variation of the peak time was increased. It is mainly because of geophysical effects, frequency and paths of typhoons. Finally, temporal variations on the timing of the peak seasons were evaluated through circular statistics by 30-year moving average data. The peak season in the Northen part of Korea (e.g. Seoul and Gangrung) has been moved back from early July to end of July while the peak season has been moved up from middle of July to early July in the Southern part of Korea (e.g. Busan and Mokpo). It seems that changes in seasonality are mostly modulated by variability in the east-asia monsoon system.

A Study for Brought Characteristics of Gyeonggi-Do Using EOF of SPI (SPI의 EOF분석을 이용한 경기도 지역 가뭄특성 연구)

  • Chang, Yun-Gyu;Kim, Sang-Dan;Choi, Gye-Woon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.05b
    • /
    • pp.867-872
    • /
    • 2005
  • This study introduces a method to evaluate the probability of a specific area to be affected by a drought of a given severity and shows its potential for investigating agricultural drought characteristics. The method is applied to Gyeonggi as a case study. The proposed procedure includes Standard Precipitation Index(SPI) time series, which are linearly transformed by the Empirical Orthogonal Functions(EOF) method, These EOFs are extended temporally with AutoRegressive Moving Average(ARMA) method and spatially with Kriging method. By performing these simulations, long time series of SPI can be simulated for each designed grid cell in whole Gyeonggi area. The probability distribution functions of the area covered by a drought and the drought severity are then derived and combined to produce drought severity-area-frequency(SAF) curves.

  • PDF

The Correlation between Groundwater Level and Moving Average of Precipitation considering Critical Infiltration in Nakdong River Watershed (한계침투량을 고려한 낙동강유역의 지하수위와 강우이동평균의 상관관계)

  • Yang, Jeong-Seok;Ahn, Tae-Yeon;Park, Jae-Hyeon;Choi, Yong-Sun;Park, Chang-Kun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.263-267
    • /
    • 2007
  • 낙동강유역의 강수량과 지하수위의 관계를 분석한 결과 갈수기에 지하수위가 현저히 저하됨을 확인하였다. 낙동강유역의 여러 관측소에서 지하수위와 강우이동평균의 상관관계를 분석한 결과 20일에서 110일 범위의 이동평균값에서 가장 높은 상관관계를 보여주었다. 유역평균 일최대침투량을 알아내기 위하여 강수량자료를 일정값 이상은 고정하여 수정된 강수량자료로 이동평균값을 구하고 이 값들과 지하수위와의 상관관계를 분석해 본 결과 10mm에서 130mm 범위의 일최대침투량으로 가정하였을 때 가장 높은 상관관계를 보여주었다. 이렇게 수정된 강수자료를 이용하여 이동평균을 구하여 지하수위와의 상관관계를 구해본 결과 낙동강유역의 자료에 대해서 한계침투량을 고려했을 때 상관관계가 더 높아짐을 알 수 있었다.

  • PDF

Characteristics of Surface and Synoptic Meteorology During High-Ozone Episodes in the Greater Seoul Area (서울.수도권 지역 고농도 오존 사례의 지상 및 종관 기상 특성)

  • 오현선;김영성
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.15 no.4
    • /
    • pp.441-455
    • /
    • 1999
  • Meteorological characteristics of three high-ozone episodes in the Greater Seoul Area, selected on the basis of morning-average wind direction and speed for the 1990~1997 period, were investigated. Three high-ozone episodes thus selected were seven days of July 3~9, 1992, nine days of July 21~29, 1994, and three days of August 22~24, 1994. Along with surface meteorological data from the Seoul Weather Station, surface and 850-hPa wind fields over the Northest Asia around the Korean Peninsula were used for the analysis. In the July 1992 episode, westerly winds were most frequent as a result of the influence of a high-pressure system in the west behind the trough. In contrast, in the July 1994 episode, easterly winds were most frequent due to the effect of a typhoon moving north from the south of Japan. Despite different prevailing wind directions in the two episodes, the peak ozone concentration of each episode always occurred when a sea-land breeze developed in association with weak synoptic forcing. The August 1994 episode, selected as being representative of calm conditions, was another typical example in which peak ozone concentration rose to 322 ppb under the well-developed sea-land breeze. All three high-ozone episodes were terminated by precipitation, and subsequent rises in ozone concentrations were also suppressed by a series of precipitation afterwards. In particular, two heavy rainfalls were the main reason why the August 1994 episode, with the highest and second-highest ozone concentrations during the 1990~1997 period, lasted for only a few days.

  • PDF

Analysis of Groundwater Level Prediction Performance with Influencing Factors by Artificial Neural Network (지하수위 영향인자에 따른 인공신경망 기반의 지하수위 예측 성능 분석)

  • Kim, Incheol;Lee, Jaehwan;Kim, Junghwan;Lee, Hyoungkyu;Lee, Junhwan
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.5
    • /
    • pp.19-31
    • /
    • 2021
  • Groundwater level (GWL) causes the stress state within soil and affects the bearing capacity and the settlement of foundation. In this study, the analyses of influencing factors on GWL fluctuation were performed. From the results, river stage and moving average of precipitation were main influence components for urban near large river and rural areas, respectively. In addition, the prediction performance of GWL using artificial neural network (ANN) was conducted with respect to the influence components. As a result, the effect of main component was significant on the prediction performance of GWL.

A Hydrological Study on Rainfall Frequency Atlas in Korea (한국 확률강우량도 작성을 위한 수문학적 연구)

  • 이원환
    • Water for future
    • /
    • v.10 no.1
    • /
    • pp.39-51
    • /
    • 1977
  • The purpose of this study is to make "The Rainfall Frequency Atlas in Korea" by the analytical method with new hydrological concepts. In this study, all of the rainfall datas in Korea was used for surveying of the basic data, and so we can get 103 sites for annual rainfall data and 100 sites for the max. in a day that are suitable to the purpose of the study. The above data groups are possible to estimate the normal standard period by the moving average method with $\pm$5% of significance level of variance ratio between the max. and min. moving average and arithmetic mean, but it may be impossible to study until 1990's for the short duration under 18-hr because the sites, having the short duration data, are only 12. The results of this study are as follows; 1. The normal standard period estimated by the moving average method is 20 year with $\pm$5% of significance level of variance ratio, and 30 year with$\pm$2-3%. 2. For the annual and max. rainfall in a day, it is possible to make the rainfall frequency atlas with 30normal standard period, but it may be impossible until 1990's for short duration. 3. "Y-k method" developed by writer is best suitable in the rainfal frequency analysis in Korea because of its convenience and reduction in the amount of calculation compared with other methods. 4. To improve the utilization of the rainfall frequency atlas, the larger-sized and the more detailed iso-precipitation atlas must be drawn.atlas must be drawn.

  • PDF

A Study of a Correlation Between Groundwater Level and Precipitation Using Statistical Time Series Analysis by Land Cover Types in Urban Areas (시계열 분석법을 이용한 도시지역 토지피복형태에 따른 지하수위와 강수량의 상관관계 분석)

  • Heo, Junyong;Kim, Taeyong;Park, Hyemin;Ha, Taejung;Kang, Hyungbin;Yang, Minjune
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.6_2
    • /
    • pp.1819-1827
    • /
    • 2021
  • Land-use/cover change caused by rapid urbanization in South Korea is one of the concerns in flood risk management because groundwater recharge by precipitation hardly occurs due to an increase in impermeable surfaces in urban areas. This study investigated the hydrologic effects of land-use/cover on groundwater recharge in the Yeonje-gu district of Busan, South Korea. A statistical time series analysis was conducted with temporal variations of precipitation and groundwater level to estimate lag-time based on correlation coefficients calculated from auto-correlation function (ACF), cross-correlation function (CCF), and moving average (MA) at five sites. Landform and land-use/cover within 250 m radius of the monitoring wells(GW01, GW02, GW03, GW04, and GW05) at five sites were identified by land cover and digital map using Arc-GIS software. Long lag-times (CCF: 42-71 days and MA: 148-161 days) were calculated at the sites covered by mainly impermeable surfaces(GW01, GW03, and GW05) while short lag-times(CCF: 4 days and MA: 67 days) were calculated at GW04 consisting of mainly permeable surfaces. The results suggest that lag-time would be one of the good indicators to evaluate the effects of land-use/cover on estimating groundwater recharge. The results of this study also provide guidance on the application of statistical time series analysis to environmentally important issues on creating an urban green space for natural groundwater recharge from precipitation in the city and developing a management plan for hydrological disaster prevention.

Improving SARIMA model for reliable meteorological drought forecasting

  • Jehanzaib, Muhammad;Shah, Sabab Ali;Son, Ho Jun;Kim, Tae-Woong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.141-141
    • /
    • 2022
  • Drought is a global phenomenon that affects almost all landscapes and causes major damages. Due to non-linear nature of contributing factors, drought occurrence and its severity is characterized as stochastic in nature. Early warning of impending drought can aid in the development of drought mitigation strategies and measures. Thus, drought forecasting is crucial in the planning and management of water resource systems. The primary objective of this study is to make improvement is existing drought forecasting techniques. Therefore, we proposed an improved version of Seasonal Autoregressive Integrated Moving Average (SARIMA) model (MD-SARIMA) for reliable drought forecasting with three years lead time. In this study, we selected four watersheds of Han River basin in South Korea to validate the performance of MD-SARIMA model. The meteorological data from 8 rain gauge stations were collected for the period 1973-2016 and converted into watershed scale using Thiessen's polygon method. The Standardized Precipitation Index (SPI) was employed to represent the meteorological drought at seasonal (3-month) time scale. The performance of MD-SARIMA model was compared with existing models such as Seasonal Naive Bayes (SNB) model, Exponential Smoothing (ES) model, Trigonometric seasonality, Box-Cox transformation, ARMA errors, Trend and Seasonal components (TBATS) model, and SARIMA model. The results showed that all the models were able to forecast drought, but the performance of MD-SARIMA was robust then other statistical models with Wilmott Index (WI) = 0.86, Mean Absolute Error (MAE) = 0.66, and Root mean square error (RMSE) = 0.80 for 36 months lead time forecast. The outcomes of this study indicated that the MD-SARIMA model can be utilized for drought forecasting.

  • PDF

Estimation of Future Design Flood Under Non-Stationarity for Wonpyeongcheon Watershed (비정상성을 고려한 원평천 유역의 미래 설계홍수량 산정)

  • Ryu, Jeong Hoon;Kang, Moon Seong;Park, Jihoon;Jun, Sang Min;Song, Jung Hun;Kim, Kyeung;Lee, Kyeong-Do
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.57 no.5
    • /
    • pp.139-152
    • /
    • 2015
  • Along with climate change, it is reported that the scale and frequency of extreme climate events show unstable tendency of increase. Thus, to comprehend the change characteristics of precipitation data, it is needed to consider non-stationary. The main objectives of this study were to estimate future design floods for Wonpyeongcheon watershed based on RCP (Representative Concentration Pathways) scenario. Wonpyeongcheon located in the Keum River watershed was selected as the study area. Historical precipitation data of the past 35 years (1976~2010) were collected from the Jeonju meteorological station. Future precipitation data based on RCP4.5 were also obtained for the period of 2011~2100. Systematic bias between observed and simulated data were corrected using the quantile mapping (QM) method. The parameters for the bias-correction were estimated by non-parametric method. A non-stationary frequency analysis was conducted with moving average method which derives change characteristics of generalized extreme value (GEV) distribution parameters. Design floods for different durations and frequencies were estimated using rational formula. As the result, the GEV parameters (location and scale) showed an upward tendency indicating the increase of quantity and fluctuation of an extreme precipitation in the future. The probable rainfall and design flood based on non-stationarity showed higher values than those of stationarity assumption by 1.2%~54.9% and 3.6%~54.9%, respectively, thus empathizing the necessity of non-stationary frequency analysis. The study findings are expected to be used as a basis to analyze the impacts of climate change and to reconsider the future design criteria of Wonpyeongcheon watershed.

Analysis of Drought Return and Duration Characteristics at Seoul (서울지점 가뭄의 재현 및 지속특성 분석)

  • Yoo, Chul-Sang;Ryoo, So-Ra
    • Journal of Korea Water Resources Association
    • /
    • v.36 no.4
    • /
    • pp.561-573
    • /
    • 2003
  • This study has analyzed the drought return and duration characteristics using the monthly rainfall at Seoul, and compared them with those obtained by applying the Poisson process. The Standardized Precipitation Index (SPI) was used as the drought index along with the 10 month moving average for the rainfall smoothing. The thresholds applied for the analysis of drought were -1.00, -1.50, and -2.00. The drought return and duration characteristics derived from the analysis of observed data show that: (1) The moderate drought occurs every 2 years and lasts about 4 - 5 months. (2) The severe drought occurs every 3 - 5 years and lasts about 2 - 4 months. (3) The extreme drought occurs every 8 - 23 years and lasts about 1 - 4 months. Especially, the severe droughts (thresholds of -1.5 and -2.0) before the long dry period were found to have longer return periods but shorter durations than those after the long dry period. This seems to be because of the high variability of precipitation as well as the fact that no snowfall has been added for the winter precipitation before the long dry period. Finally, the comparison of results derived from the analysis of observed data and those derived by applying the Poisson process shows that the Poisson process well explain the return and duration characteristics of drought.