• Title/Summary/Keyword: Movement of Sea Water

Search Result 157, Processing Time 0.025 seconds

Dynamics of Air Pollutants during the Yellow Sand Phenomena (黃砂現象의 大氣汚染物質 動態에 關한 硏究)

  • 李敏熙;黃奎浩;金恩植;平井英二;丁子哲治;宮崎元一
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.6 no.2
    • /
    • pp.183-191
    • /
    • 1990
  • To check the possible transportation of gaseous air pollutants with the particles of yellow sand in the movement of air masses during the Yellow Sand Phenomenon, the concentrations of such air pollutants as TSP, $SO_2, CO, NO_x, O_3 and N-CH_4$, and wind wpeed were measured during the Yellow Sand Phenomenon (April 8 $\sim 10, 1990) and they were compared with those during the normal times in Korea. Meanwhile dust color of the samples during the Yellow Sand Phenomenon was the color of sand, that during the normal times was dark-brown. The concentrations of dusts; water soluble components, and metallic components of soil-originated elements during the Yellow Sand Phenomenon were higher than those during the normal times. While the metallic components in the dusts during the Yellow Sand Phenomenon were from soil-originated elements, those during the normal times were of both soiloriginated and sea-originated elements. The change of hourly concentrations of air pollutants showed bi-modal distribution during the two periods. Generally, the concentration levels of air pollutants during the Yellow Sand Period were higher than those during the normal times. Although similarity was observed in the primary sources, differences were observed in the dynamics of the secondary sources due to chemical reactions of the air pollutants during the two periods.

  • PDF

Temperature Variations in the Mixed Layer with the Passage of Typhoons Using One-Dimensional Numerical Model (1차원 모델상에서 태풍통과시의 혼합층 수온 변화)

  • Hong, Chul-Hoon;Masuda, Akira
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.51 no.1
    • /
    • pp.107-112
    • /
    • 2018
  • One-dimensional numerical model is implemented to investigate temperature variations in the mixed layer depth (MLD) with the passage of typhoons. In the model, we assume a non-divergent, infinite ocean and consider wind effects only, excluding isostatic effects (inverse barometric effects) and upwelling with vertical movement of the water column. Numerical experiments investigate the effects of typhoon tracks on temperature variations, including their dependence on vertical resolutions in the MLD and these results are compared with those in a three-dimensional primitive equation model (POM). The model reproduces features of the observed temperature variations in the MLD fairly well, and implies that wind effects, rather than isostatic effects, play a predominant role in temporal and spatial temperature variations in the MLD. After the passage of typhoons, however, the model does not reproduce well the temperature variations observed in the MLD, because a limitation of the model is its inability to reproduce events such as cyclonic eddy formation (Hong et al., 2011; Masuda and Hong, 2011). The model also shows well the so called 'rightward bias' (Price, 1981) of sea surface cooling which is the most predominant in the right hand side of typhoon's track.

Oil Spill Simulation by Coupling Three-dimensional Hydrodynamic Model and Oil Spill Model (3차원 동수역학모형-유류확산모형 연계를 통한 유출유 거동 모의)

  • Jung, Tae-Hwa;Son, Sangyoung
    • Journal of Ocean Engineering and Technology
    • /
    • v.32 no.6
    • /
    • pp.474-484
    • /
    • 2018
  • In this study, a new numerical modeling system was proposed to predict oil spills, which increasingly occur at sea as a result of abnormal weather conditions such as global warming. The hydrodynamic conditions such as the flow velocity needed to calculate oil dispersion were estimated using a three dimensional hydrodynamic model based on the Navier-Stokes equation, which considered all of the physical variations in the vertical direction. This improved the accuracy compared to those estimated by the conventional shallow water equation. The advection-diffusion model for the spilled oil was combined with the hydrodynamic model to predict the movement and fate of the oil. The effects of absorption, weathering, and wind were also considered in the calculation process. The combined model developed in this study was then applied to various test cases to identify the characteristics of oil dispersion over time. It is expected that the developed model will help to establish initial response and disaster prevention plans in the event of a nearshore oil spill.

Study on Salinity Distribution Change by the Fresh Water at the Bay in Flood (홍수기 하구로 유입된 담수로 인한 만에서의 염분분포 변화에 관한 연구)

  • Lee, Hyun-Seok;Ishikawa, Tadaharu;Kim, Young-Sung;Chae, Hyo-Sok
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.1
    • /
    • pp.23-30
    • /
    • 2011
  • Any significant inflow of fresh water due to flood or snow melting can rapidly reduce salinity at the bay. In such a case, the habitat environment in the sea near river mouth can be partly destroyed. Therefore, research to understand the salinity distribution quantitatively at the bay for the utilization of natural environment and for the inhabitant conservation must be very important. In this study, the investigation on the relationship between satellite image and turbidity is carried out first, and then the salinity distribution at the bay using the relationship between turbidity and salinity is derived. The main results are as follows. First the reappearance ability of RGB bands respectively of the satellite image is investigated, and then it was confirmed that the combination of band2 and band3 expressed best the movement characteristics of turbid water at the bay is chopped up into 4 small areas. Second the turbidity of river mouth is estimated using the travel time from the upward monitoring station to the river mouth. Finally the satellite image is converted into the salinity distribution by the correlation of salinity and turbidity. It is confirmed that the salinity distributions obtained from above three investigation methods are quite reasonable and clear.

Effect of the Tidal Sea Level Change on the Unconsolidated Sediment in Gwangyang Bay (광양만 조석 해수면 변동의 미고결 퇴적층에 대한 영향)

  • CHO Tae-Chin
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.24 no.1
    • /
    • pp.9-20
    • /
    • 1991
  • The characteristics of the unconsolidated sediment in Gwangyang bay was analyzed from the core samples. The porosity of the sediment showed irregular variation with respect to the sedimentation depth, which indicated that sediment weight-induced consolidation was not significant. Numerical analysis for the mechanical and hydraulic behavior of the unconsolidated sediment due to the tidal sea level change was processed. Because of the delayed excessive pore pressure change in the very low permeable mud medium, the magnitude of the excessive pore pressure for the duration of the minimum sea level exceeded the total stress from the sea water weight, which resulted in the negative (tensional) effective stress below the top surface. The in-situ effective stress, obtained by superposing the tensional effective stress on the solid weight-induced compressive stress, was remained to be tensile (quick-sand condition) near the top surface of the mud deposit. The occurrence of the quirk-sand condition provided a theoretical evidence for the insignificant consolidation and the irregular porosity variation of the sediment. When the sand is distributed on the top surface of the mud layer, the quick-sand condition occurred below the sandy mud layer and the downward movement of sand particles was facilitated.

  • PDF

EFFECTS OF SUSPENDED SILT AND CLAY ON THE MORTALITY OF SOME SPECIES OF BIVALVES (이매패류의 폐사에 미치는 현탁부이의 영향)

  • CHANG Sun-duck;CHIN Pyung
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.11 no.4
    • /
    • pp.227-231
    • /
    • 1978
  • Effects of suspended silt and clay on the survival of the rearing bivalves, Meretrix lusoria, Cyclina sinensis and Mactra veneriformis were studied. During sixty-five days of experimental cultures in different concentrations of suspended silt and clay and in different time of immersions, mortalities of the bivalves were checked every day, and the rates of shell movement and oxygen consumption were measured. In general, the higher the concentration of silt and clay and the longer the immersion time, the earlier the occurence, and the higher the rate of the mortalities of the experimental bivalves. M. veneriformis was subjected to earlier mortality than the others, and the period of $50\%$ mortality was the shortest of the three species (37 days in 1,000 ppm), and longer was that of C. sinensis(42 days). Mortality of M. lusoria occured latest and $50\%$ mortality was seen at the immersion time of 50-51 days. Particularly, M. lusoria showed no mortality in the sea water with 100 ppm of suspended silt and clay, and even in the concentrations of 500 or 1,000 ppm they were able to survive without mortality only if the immersion time was short (12-18 hours per day). M. veneriformis and C. sinensis were also able to survive without mortality when the immersion time was short (12 hours per day) in low concentration (100 ppm). Shell movements of experimental bivalves varied depending upon species. In the case of M. veneriformis the shell was opened continuously and C. sinensis opened their shells frequently, while M. lusoria maintained their shells closed in any experimental concentrations of sea water with suspended silt and clay. Total metabolic activity of M. veneriformis was found to be highest while that of M. lusoria showed the lowest. Little difference of oxygen consumption in excised gill tissue was shown between the control group and the experimental groups. Consequently, it may be stated that the mortality results from a immersion in sea water with high concentration of suspended silt and clay for long-time although the survival rates of the experimental bivalves depend also upon the species, physiological conditions, concentration of suspended silt and clay and immersion time. The survival percentage of bivalve y in relation to the time (day) of immersion X in sea water of suspended silt and clay was found to be: $$M.\;lusoria\;(1,000\;ppm):\;y=7.7\times10^9\;\chi^{-4.77}\;(500\;ppm):\;y=259\chi^{-0.26}$$ $$C.\;sinensis\;(1,000\;ppm):\;y=-21\chi+936\;(\chi<44),\;y=-0.65\;\chi+35\;(\chi>44)$$ $$(500\;ppm):\;y=4.4\times10^5\;\chi^{-2.27}$$ $$M.\;veneriformis\;(1,000\;ppm):\;y=-18\chi+716\;(\chi<39),\;y=-0.89\chi+39\;(\chi>39)$$

  • PDF

Analysis the factors on the capsize of passenger vessel Sewol (여객선 세월호의 전복 요인 분석)

  • KIM, Jung-Chang;KANG, Il-Kwon;HAM, Sang-Jun;PARK, Chi-Wan
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.51 no.4
    • /
    • pp.512-519
    • /
    • 2015
  • A historical tragic disaster happened by capsizing the passenger ship Sewol at South Western Sea of Korea in 16, April 2014. The ship which left Incheon harbour to bound for Jeju port passed Maengol strait and reached to approach of Byung Pung island, and then capsized and sank with a sudden inclination to the portside in the mean time of starboard the helm. In this time, the ship which has very poor stability without sufficient ballast waters and with over loading cargo listed port side caused by the centrifugal force acting to the outside of turning. A lot of cargoes not fastened moved to the port side consequently, and the ship came to beam end to capsize and sank in the end. No crews including especially captain would offer their own duties in a such extremely urgent time, as a result, enormous number of victims broke out including a lot of student. In this report, author carried out some calculation on the factors which influenced on the stability of the ship, i.e. the ship's speed, the rudder angle, the weight of cargoes and distance of movement, the surface effect of liquid in the tank. We found out that the most causes of capsize were the poor stability with heavy cargoes and insufficient amount of ballast water against the rule, and the cargoes unfastened moved one side to add the inclination as well. Above all, the owner be blamable because of the illegally operating the ship without keeping the rule.

Target Localization Method based on Extended Kalman Filter using Multipath Time Difference of Arrival (다중경로 도달시간차이를 이용한 확장칼만필터 기반의 표적 위치추정 기법)

  • Cho, Hyeon-Deok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.6
    • /
    • pp.251-257
    • /
    • 2021
  • An underwater platform operating a passive sonar needs to acquire the target position to perform its mission. In an environment where sea-floor reflections exist, the position of a target can be estimated using the difference in the arrival time between the signals received through multipaths. In this paper, a method of localization for passive sonar is introduced, based on the EKF (Extended Kalman Filter) using the multipath time difference of arrival in underwater environments. TMA (Target Motion Analysis) requires accumulated measurements for long periods and has limitations on own-ship movement, allowing it to be used only in certain situations. The proposed method uses an EKF, which takes measurements of the time differences of the signal arrival in multipath environments. The method allows for target localization without restrictions on own-ship movement or the need for an observation time. To analyze the performance of the proposed method, simulation according to the distance and depth of the target was performed repeatedly, and the localization error according to the distance and water depth were analyzed. In addition, the correlation with the estimated position error was assessed by analyzing the arrival time difference according to the water depth.

Topographic Variability during Typhoon Events in Udo Rhodoliths Beach, Jeju Island, South Korea (제주 우도 홍조단괴해빈의 태풍 시기 지형변화)

  • Yoon, Woo-Seok;Yoon, Seok-Hoon;Moon, Jae-Hong;Hong, Ji-Seok
    • Ocean and Polar Research
    • /
    • v.43 no.4
    • /
    • pp.307-320
    • /
    • 2021
  • Udo Rhodolith Beach is a small-scale, mixed sand-and-gravel beach embayed on the N-S trending rocky coast of Udo, Jeju Island, South Korea. This study analyzes the short-term topographic changes of the beach during the extreme storm conditions of four typhoons from 2016 to 2020: Chaba (2016), Soulik (2018), Lingling (2019), and Maysak (2020). The analysis uses the topographic data of terrestrial LiDAR scanning and drone photogrammetry, aided by weather and oceanographic datasets of wind, wave, current and tide. The analysis suggests two contrasting features of alongshore topographic change depending on the typhoon pathway, although the intensity and duration of the storm conditions differed in each case. During the Soulik and Lingling events, which moved northward following the western sea of the Jeju Island, the northern part of the beach accreted while the southern part eroded. In contrast, the Chaba and Maysak events passed over the eastern sea of Jeju Island. The central part of the beach was then significantly eroded while sediments accumulated mainly at the northern and southern ends of the beach. Based on the wave and current measurements in the nearshore zone and computer simulations of the wave field, it was inferred that the observed topographic change of the beach after the storm events is related to the directions of the wind-driven current and wave propagation in the nearshore zone. The dominant direction of water movement was southeastward and northeastward when the typhoon pathway lay to the east or west of Jeju Island, respectively. As these enhanced waves and currents approached obliquely to the N-S trending coastline, the beach sediments were reworked and transported southward or northward mainly by longshore currents, which likely acts as a major control mechanism regarding alongshore topographic change with respect to Udo Rhodolith Beach. In contrast to the topographic change, the subaerial volume of the beach overall increased after all storms except for Maysak. The volume increase was attributed to the enhanced transport of onshore sediment under the combined effect of storm-induced long periodic waves and a strong residual component of the near-bottom current. In the Maysak event, the raised sea level during the spring tide probably enhanced the backshore erosion by storm waves, eventually causing sediment loss to the inland area.

Preliminary Report on the Ecology of the Penguins Observed in the Cold Years and a Less Cold Year in the Vicinity of King Sejong Station, King George Island off the Antarctic Peninsula (남극 세종기지에서 추운 해와 덜 추운 해에 관찰된 펭귄들의 생태에 관한 1차보고)

  • Chang, Soon-Keun
    • Ocean and Polar Research
    • /
    • v.26 no.1
    • /
    • pp.87-101
    • /
    • 2004
  • This paper delineated the ecology including movement (departure from the rookery and returning to the rookery), egg-laying, and hatch of the penguins occurred in the cold years and a less cold year in the vicinity of King Sejong Station, King George Island off the Antarctic Peninsula. The years of 1988, 1991, 1992, and 1995 were selected as cold years and the year of 2001 was selected as a less cold year based on the mean annual temperature of the years. Gentoo Penguin (Pygoscelis papua) left their rookery in May, meanwhile some remained around the station. They returned in middle-September in the less cold .year, and returned in late-September to early-October in the cold years. Chinstrap Penguin (Pygoscelis antarctica) left their rookery in early-April in the cold years as well as in the less cold year without exception. They returned to the rookery in late-October to early-November in cold years, meanwhile in early-October in the less cold year. This difference in the returning of this bird seems to be related with the exposed sea water, i.e., sea ice condition to feed in the sea. The global warming will lead to the appearance of birds which breed in the Sub-Antarctic. For example, one pair of King Penguin (Aptenodytes patagonicus) was observed in the Maxwell Bay in austral summer. And a pair of snide-like bird was recently observed for the first time in November 2001 at the penguin rookery located in the Barton Peninsula, King George Island. And it will also lead to the disappearance of an Emperor Penguin (Aptenodytes forsteri) which appeared in the full winter when Maxwell Bay and Marian Cove were frozen. It seems that the behaviour of the penguins observed around the station shows the complex effects of the ecology of the birds in combination with the natural environments, which include feeding strategy and areas, animal Instincts, exposed terrain related to weather conditions, and globa1 warming. It is necessary to take further observation and carry out systematic researches on the birds including penguins around the station which show the ecology of the birds as well as the environmental changes.