• Title/Summary/Keyword: Movement Right

Search Result 834, Processing Time 0.024 seconds

A Digital Device-Based Method for Quantifying Motor Impairment in Movement Disorders (디지털 디바이스를 이용한 이상운동증에서의 운동손상 정량화 방법)

  • Bae, Suhan;Yun, Daeun;Ha, Jaekyung;Gwon, Daeun;Kim, Young Goo;Ahn, Minkyu
    • Journal of Biomedical Engineering Research
    • /
    • v.41 no.6
    • /
    • pp.247-255
    • /
    • 2020
  • Accurate diagnosis of movement disorders is important for providing right patient care at right time. In general, assessment of motor impairment relies on clinical ratings conducted by experienced clinicians. However, this may introduce subjective opinions into scoring the severity of motor impairment. Digital devices such as table PC and smart band with accelerometer can be used for more accurate and objective assessment and possibly helpful for clinicians to make right decision of patient's states. In this study, we introduce quantification algorithms of motor impairment which uses the digital data acquired during four clinical motor tests (Line drawing, Spiral drawing, Nose to finger and Hand flip tests). The step by step procedure of quantifying metrics (Tremor Frequency, Tremor Magnitude, Error Distance, Time, Velocity, Count and Period) are provided with flowchart. The effectiveness of the proposed algorithm is presented with the result from simulated data (normal, normal with tremor and slowness, poor with tremor, poor with tremor and slowness).

Correlation Between Functional Movement Screen Scores, Lower Limb Strength, Y-Balance Test, Grip Strength, and Vertical Jump and Incidence of Injury Due to Musculoskeletal Injury Among Abu Dhabi Police Recruits

  • Hamad Alkaabi;Everett Lohman;Mansoor Alameri;Noha Daher;Aleksandar Cvorovic;Hatem Jaber
    • Physical Therapy Rehabilitation Science
    • /
    • v.12 no.3
    • /
    • pp.222-228
    • /
    • 2023
  • Objective: Training-related injuries and attrition put an additional burden on police and military institutions. Preventing and minimizing musculoskeletal injuries is the primary concern of the Abu Dhabi Police. Therefore, this study aimed to evaluate the correlation between functional movement screen, lower-limb strength, Y-balance test, grip strength and vertical jump and the incidence of musculoskeletal injuries among Abu Dhabi police recruits. Design: Observational analytical study. Methods: An observational study was conducted on 400 male police recruits of Abu Dhabi Police Academy. Physical performance was assessed before the 16-weeks basic police training. Spearman's correlation evaluated the correlation between the performance parameters and the outcome measures and logistic regression predicted the risk factors associated with musculoskeletal injuries. Results: 149 (34.4%) participants reported at least one injury during the basic police training. Comparison between injured and non-injured participants showed significant difference in mean right Y-balance, back-leg-chest dynamometer, and vertical jump (p=0.02, p=0.02, and p=0.04, respectively). Spearman's correlation showed a significant negative correlation between risk of injury and back-leg-chest dynamometer and right Y balance (ρ= -0.11, p=0.03). Logistic regression showed that back-leg-chest dynamometer and right Y balance were significant predictors of injury (p =.036 and p=0.037; Odds ratio=0.96; 95% CI (0.92, 0.99) and Odds ratio=0.99; 95% CI (0.98,0.99). Conclusions: Our findings suggest functional movement screen and grip strength may not independently predict injury rates, balance and lower-limb strength needs to be considered in injury prevention strategies to reduce musculoskeletal injuries.

Visual Measurement of Pile Movement for the Foundation Work using a High-Speed Line-Scan

  • Lim, Mee-Seub;Lim, Joon-Hong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1802-1807
    • /
    • 2004
  • When a construction company builds a high structure, many piles should be driven into the ground by a hammer whose weight is 7,000 Kg in order to make the ground under the structure safe and strong. So, it is essential to determine whether a pile is penetrated into the ground enough to support the weight of the structure since ground characteristics at different locations are different each other. This paper proposes a visual measurement system for pile rebound and penetration movement including vibration using a high-speed line-scan camera and a specially designed mark to recognize two-dimensional motion parameters of the mark using only a line-scan camera. A mark stacking white and black right-angled triangles is used for the measurement, and movement information for vertical distance, horizontal distance and rotational angle is determined simultaneously

  • PDF

The Movement Order of the νP-Subject and the VP-Object in English

  • Lee, Doo-Won
    • Korean Journal of English Language and Linguistics
    • /
    • v.4 no.1
    • /
    • pp.103-116
    • /
    • 2004
  • Chomsky (2001) and Kitahara's (2002) suggestion that object shift occurs prior to movement of the νP-subject to SPEC-T is not on the right track with respect to the Merge operation. According to the Merge operation, TP is necessarily created earlier than CP. Chomsky (2001) suggests that the probe-goal relation between T and SUBJ is evaluated in the CP after it is known whether the position of as has become a trace losing its phonological content. However, the FocP is not a phase (CP). So, Chomsky (2001) and Kitahara's (2002) suggestion is not correct in the case of the movement of OBJ to the spec of Foc in English, either. The aim of this paper is to show that the νP-subject must move to SPEC- T prior to the consecutive movement of the wh-object to SPEC-C via object shift in English. This derivation obeys Chomsky's (2001) so-called probe-goal matching condition.

  • PDF

The Comparison of the Cerebral Motor Area Activation between Diagonal and Straight Exercises of the Lower Extremity -A Case Study- (하지의 대각선 운동과 직선 운동 시 대뇌 운동영역 활성도 비교 -사례연구-)

  • Lee, Seuong-Yun;Rhee, Min-Hyung
    • PNF and Movement
    • /
    • v.14 no.3
    • /
    • pp.231-236
    • /
    • 2016
  • Purpose: The purpose of this study was to compare cerebral motor area activation between the diagonal and straight movements of the lower extremity. Methods: The subjects of this study consisted of two right-handed adults. Functional magnetic resonance imaging was conducted to measure brain activation following the diagonal and straight movements of the lower extremity. The primary motor area, premotor area, and supplementary motor area, which are closely related to exercise, were set as the regions of interest. Results: The brain activation by diagonal movement was an average of $1036{\pm}75$ voxel, and brain activation by straight exercise was an average of $773{\pm}55$ voxel. Conclusion: Based on these results, we conclude that the activation of the cerebral motor area is more effective for diagonal movements than for straight movements.

The Effect of Ankle-Foot Orthosis and Trunk Orthosis on Movement patterns used in a Supine to Stand Rising task (누운자세에서 똑바로 일어서기 운동형태에서 족관절보조기와 체간보조기의 영향)

  • kwon mi-ji
    • The Journal of Korean Physical Therapy
    • /
    • v.16 no.2
    • /
    • pp.22-32
    • /
    • 2004
  • The purpose of this study was to examine the effect of ankle-foot orthosis and lumbosacral orthosis on movement patterns used to rise from the supine position to erect stance. Thirty-two healthy adults participated. Subjects were videotaped while rising from a supine position on a floor mat. Each subject performed 10 trials each of three condition;general condition, right ankle-foot orthosis, lumbosacral orthosis. subjects rose most commonly using a symmetrical push pattern of the upper extremities, a symmetrical squat pattern in the lower extremities, a symmetrical in the trunk under each of three conditions. Changes in the incidence of movement patterns occurred in lower extremities of the ankle-foot orthosis and lumbosacral orthosis condition and trunk of the ankle-foot orthosis condition. From a dynamic pattern theory perspective, ankle motion is a control variable for the supine position to erect standing movement.

  • PDF

Effect of the Hip Joint Adduction on Walking During the Plank Exercise (엉덩관절모음과 플랭크운동이 보행에 미치는 영향)

  • Mun, Dal Ju;Park, Jae Cheol;Choi, Seck Joo
    • Korean Educational Research Journal
    • /
    • v.40 no.3
    • /
    • pp.67-84
    • /
    • 2019
  • The purpose of this study is to see how the stability of posture due to elastic band during plank movement affects walking. Thirty healthy men in their 20s were given a total of 30 minutes of 10 general plank exercises, 10 plank exercises with two hip joints adduction, and 10 plank exercises with one hip joint adduction. The plank movement was conducted three times a week for a total of six weeks, with a five-minute warm-up. The results of this study are as follows: There was a significant difference between period and group interactions on cadence (p<0.05), with significant difference between the period and group between the left foot on stride length of the left side foot (p<0.05), with significant difference between the period and the period of the interaction between the right foot and the period on stride length of the right side foot (p<0.05), and a one-step change between the right foot and the military interaction on Step time of the right side foot(p<0.05). The conclusion of this study is that the resistance movement on the adduction of both hips increases the instability of the trunk over the normal plank movement and adduction of one hip, thereby enhancing walking ability along with the stability of the trunk.

  • PDF

Quantitative analysis of the TMJ movement with a new mandibular movement tracking and simulation system

  • Kim, Dae-Seung;Hwang, Soon-Jung;Choi, Soon-Chul;Lee, Sam-Sun;Heo, Min-Suk;Heo, Kyung-Hoe;Yi, Won-Jin
    • Imaging Science in Dentistry
    • /
    • v.38 no.4
    • /
    • pp.203-208
    • /
    • 2008
  • Purpose : The purpose of this study was to develop a system for the measurement and simulation of the TMJ movement and to analyze the mandibular movement quantitatively. Materials and Methods : We devised patient-specific splints and a registration body for the TMJ movement tracking. The mandibular movements of the 12 subjects with facial deformity and 3 controls were obtained by using an optical tracking system and the patient-specific splints. The mandibular part was manually segmented from the CT volume data of a patient. Three-dimensional surface models of the maxilla and the mandible were constructed using the segmented data. The continuous movement of the mandible with respect to the maxilla could be simulated by applying the recorded positions sequentially. Trajectories of the selected reference points were calculated during simulation and analyzed. Results : The selected points were the most superior point of bilateral condyle, lower incisor point, and pogonion. There were significant differences (P<0.05) between control group and pre-surgical group in the maximum displacement of left superior condyle, lower incisor, and pogonion in vertical direction. Differences in the maximum lengths of the right and the left condyle were 0.59${\pm}$0.30 mm in pre-surgical group and 2.69${\pm}$2.63 mm in control group, which showed a significant difference (P<0.005). The maximum of differences between lengths of the right and the left calculated during one cycle also showed a significant difference between two groups (P<0.05). Conclusion : Significant differences in mandibular movements between the groups implies that facial deformity have an effect on the movement asymmetry of the mandible. (Korean J Oral Maxillofac Radiol 2008; 38 : 203-8)

  • PDF

A Developmental Study of an Alignment Program for the Asymmetrically Developed Squash Players (불균형 신체발달 스쿼시 선수들의 교정 프로그램 개발 연구)

  • Kim, Seung-Kwon
    • Korean Journal of Applied Biomechanics
    • /
    • v.25 no.4
    • /
    • pp.423-429
    • /
    • 2015
  • Objective : The purpose of this study was to investigate the effects of a body alignment correction program on asymmetrically developed squash players. Method : 30 experienced squash players who showed asymmetric body development, after evaluation of moire topography contour line shape, were involved in the experiment. All of them were right-handed and had more than five years of experience playing squash. Variables of body composition, moire topography and EMG were statistically compared between pre- and post- application of the 12-week body alignment correction program. The program consisted of 10-minute, left-handed forehand and backhand drive movements and 36 minutes performing 12 different yoga postures. Results : First, the body alignment correction program showed significant effects on the total weight, body fat percentage, and body mass index of the participants. Second, a decrease of right side inclined angles and an increase of left side inclined angles might result in a higher left-right symmetry rate and a better left-right balance; however the data was not statistically significant. Third, the EMG left-right deviation of erector spinae and latissimus decreased and the erector spinae muscle was thought to be more essential for vertebral movement and left-right asymmetry correction. Conclusion : A body alignment correction program, including yoga and opposite side exercises, could reduce left-right asymmetry.

Kinematical Analysis of Heel-Brake Stop in Inline Skate (인라인 스케이트(Inline Skate) 힐 브레이크(Heel-Brake) 정지에 관한 운동학적 분석)

  • Han, Jae-Hee;Lim, Yong-Kyu
    • Korean Journal of Applied Biomechanics
    • /
    • v.15 no.2
    • /
    • pp.11-20
    • /
    • 2005
  • This study has a purpose on contributing to apprehend safe and right way to stop to the inline skate beginners and to the instructors who teaches line skating on the basis for the result of the kinematical analysis on Heel brake stop movement of the inline skate, focusing on the displacement on COG, angle displacement of ankle joint, angle displacement of knee joint, angle displacement of hip joint, using a 3D image method by DLT. To achieve this goal, we analysed the kinematical factor of the 3 well-trained inline skating instructors and obtained the following results. 1. During the movement of heel-brake stop, when strong power was given to a stable and balanced stop and the lower limbs, if the physical centroid is lowered the stability increases, and if it is placed high from the base surface, as the stability decreases compared to the case of low physical centroid, we should make a stop by placing a physical centroid in the base surface and lowering the hight of physical centroid. 2. To make a stable and balanced stop and to provide a strong power to the lower limbs, it is advisable to make a stop by decreasing an angle displacement of ankle joint during a "down" movement. In case of the left ankle joint, in all events and phases the dorsiflexion angle showed a decrease. Nevertheless, in the case of the right ankle joint, the dorsiflexion angle shows an increase after a slight decrease. The dorsiflexion angle displacement of ankle joint can be diminished because of the brake pad of the rear axis frame of the right side inline skate by raising a toe, but cannot be more decreased if certain degree of an angle is made by a brake pad touching a ground surface. To provide a power to a brake pad, it is recommended to place a power by lowering a posture making the dorsiflexion angle of the left ankle joint relatively smaller than that of the right ankle. 3. To make a stable and balanced stop and to add a power to a brake pad, the power must be given to the lower limbs in lowering the hight of physical centroid. For this, it is recommended to make a down movement by decreasing the flexion angle of a knee joint and it is necessary to make a down movement by a regular decrease of the angle displacement of knee joint rather than a swift down movement in every event and phase. 4. The right angle displacement of hip joint is made by lowering vertically the hight of physical centroid as leaning slightly forward. If too narrow angle displacement of hip joint is made by leaning forward too much, the balance is lost during the stop by placing the center in front. To make a stable and balance stop and to place a strong power to the lower limbs, it is recommendable to make a narrow angle by lower the hip joint angle. However, excessive leaning of the upper body to make the angle too narrow, can cause an instable stop and loss of physical centroid. After this study, it is considered to assist the kinematical understanding during the heel brake stop movement of the inline skate, and, to present basic data in learning a method of stable and balanced stop for the inline skating beginners or for the inline skate instructors in the present situation of the complete absence of the study in inline skating.